Instructions No. 3200E # Fairbanks-Morse # Stationary Diesel Engines Models 32E12 and 32E14 6 Cyl. Model 32E14 Stationary Diesel Engine with Direct Connected Alternator # ENGINES COVERED This instruction book covers the Model 32E12 Stationary Diesel Engines in 2 and 3 cylinders, and the Model 32E14 Stationary Diesel Engines in 2, 3, 4, 5 and 6 cylinders. Fourth Edition—June, 1954 Supersedes Third Edition—Dec., 1948 217253-045701M-B.L.P. # READ THE INSTRUCTIONS Before attempting to operate the engine, read the instructions carefully. Familiarity with the engine and a thorough knowledge of the manner in which it operates is necessary to insure satisfactory and dependable operation. # INTRODUCTION The material in this instruction book has been arranged into sections to make ready reference possible and to provide an organization of material which will suit the demands of the various persons interested in the engine. # I. Description and Operation. Pages 3 to 6, inclusive. This section is indespensable to an operator who is interested in obtaining a thorough knowledge of the engine, and will be found valuable to others desiring a general knowledge of the engine and the manner in which it operates. # II. Installation Instructions. Pages 7 to 19, inclusive. Complete instructions for installing the engine are contained in this section. #### III. Operating Instructions. Pages 19 and 20. The operator should study this section thoroughly as it will provide him with the necessary information to operate the engine. #### IV. Inspection Routine. Page 21. Both the owner and operator should read this section, and they should cooperate in establishing a suitable inspection routine for the particular installation. # V. Servicing Instructions. Pages 22 to 27, inclusive. This section contains instructions which will enable the operator to perform minor adjustments and servicing. #### VI. Repair Charts and List. Pages 28 to 68, inclusive. This section contains an explanation of the repair list; instructions for ordering repair parts; an index of list divisions; an index of repair numbers; and the list divisions, each of which comprises one or more repair charts illustrating the parts furnished for repairs followed by a list of the repair parts found on the particular chart. In addition, the charts will be found useful in studying the construction of the engine. Repair numbers on charts that are underscored with a dotted line are numbers that are referred to in the instruction text. #### ·· φιιιιφ ·· # TABLE OF CONTENTS | | Pag | e | | | Page | |-----|--|---|------|-------------------------------------|------| | I. | Description and Operation | 3 | IV. | Inspection Routine (Continued) | 21 | | | 1. Type and Cycle | 3 | 3. | Monthly Routine | 21 | | | 2. Fuel Supply System | | 4. | Quarter—Annual Routine | 21 | | | 3. Fuel Injection System | | 5. | | | | | 4. Governing System | | 6. | Annual Routine | 21 | | | 5. Lubricating System | | | | | | | 6. Cooling Water System | | V. S | Servicing Instructions | 22 | | | 7. Air Starting System | | 1. | Main Bearings | 22 | | | 8. Scavenging Air System | 6 | 2. | Connecting Rod Crankpin Bearings | | | | 9. Exhaust System | 6 | 3. | Air Stop Ring. | | | 1 | 0. Synchronizer | 6 | 4. | Crankpin Oil Rings | | | | | | 5. | Pistons | | | II. | Installation Instructions | 7 | 6. | Cylinder Exhaust Port Relief | | | | | _ | 7. | Piston Cylinder Head Clearance | | | | 1. Layout of Plant | | 8. | Air Start Mechanism | 24 | | | 2. Foundation | | 9. | Fuel Injection Pump | | | | 3. Installing the Engine and Drive Equipment | | 10. | Differential Fuel Injection Valve | | | | 4. Fuel Supply System | | 11. | Injection Timing | | | | 5. Lubricating System | | 12. | Balancing Load on Cylinders | | | | 6. Cooling Water System | | 13. | Fuel Supply Pump | | | | 7. Air Start System | | 14. | Gravity Feed Fuel Regulator | | | | 8. Scavenging Air System | | 15. | Force Feed Lubricator | 25 | | | 9. Exhaust System | | 16. | Air Filter | 25 | | | 0. Synchronizer1 | | 17. | Exhaust Equipment | 25 | | J | 1. Checking Existing Installations | 9 | 18. | Crankshaft End Play | | | | | • | 19. | Changing Rotation | 25 | | III | Operating Instructions | 9 | 20. | Changing Speed | 26 | | | 1. Before Starting the Engine | 9 | 21. | Woodward Governor | 26 | | | 2. Starting the Engine | | 22. | Assembling Dismantled Engine | 27 | | | 3. After the Engine is Running | 0 | VI. | Repair Charts and Lists | 99 | | | 4. Stopping the Engine | | VI. | Repair Offaits and hists | 40 | | | t. Stopping the Engine. | | | planation of Repair List | | | IV. | Inspection Routine | 1 | | tructions for Ordering Repair Parts | | | IV. | | | | lex of List Divisions | | | | 1. Daily Routine | 1 | | lex of Repair Numbers | | | | 2. Weekly Routine2 | 1 | Lis | t Divisions | 30 | # I. DESCRIPTION AND OPERATION This section covers the description and operation of the several systems which make up the engine and complete installation. # 1. Type and Cycle Type and Cycle—These engines are of the valveless, airless fuel injection type, and are designed to use a wide variety of fuels. They operate on the two cycle principle in which two strokes of the piston (one complete revolution of the crankshaft), are necessary to complete the cycle. Compression—The cycle begins with the upward movement of the piston from its lower dead center. After the piston has covered the exhaust ports, the air in the cylinder is compressed, and during the same upward movement of the piston, air is drawn into the crankcase through automatic suction valves. Combustion and Expansion—As the piston nears upper dead center, fuel is injected into the combustion space where it burns and expands, forcing the piston downward. Expansion of the hot gases forms the greater part of the power stroke, and continues nearly to the end of the stroke. During this stroke, the air in the crankcase is slightly compressed. Exhaust and Scavenging—Toward the end of the expansion or power stroke, the piston uncovers the exhaust ports, allowing the burned gases to escape to the atmosphere through the exhaust system. Immediately after the exhaust ports have been uncovered, when the pressure in the cylinder has dropped to atmospheric, the air inlet ports are uncovered by the piston, and the compressed air in the crankcase rushes through the air transfer passages into the cylinder, sweeping the exhaust gases out of the cylinder through the exhaust ports and filling the cylinder with fresh air for the next compression stroke. # 2. Fuel Supply System Supply System—The fuel system consists of the supply and injection systems. The supply system includes the fuel storage tank, suction and overflow pipes with the necessary fittings and valves, fuel supply pump, suction filter, and reservoir. When the fuel tank must be located above the level of the fuel reservoir, a gravity feed fuel regulator must be included. Gravity Feed Fuel Regulator—The regulator consists of a water jacketed reservoir containing a float mechanism, see Fig. 10. This float operates a valve which controls the supply of fuel admitted to the regulator reservoir. The regulator is provided with an air vent in the cover which maintains atmospheric pressure on the fuel and indicates, by fuel leakage, that the float is inoperative. This air vent is arranged so that any fuel leakage flows into an open funnel and then into a vented tank outside of the building. With the open funnel, the operator can readily detect any leakage, and with the tank placed outside of the building, the fire hazard is greatly reduced. Operation of Fuel Supply System—The supply pump draws fuel from the fuel storage tank or gravity feed fuel regulator through the suction filter and delivers it to the fuel reservoir where it is ready to be taken up by the individual injection pumps. Any excess fuel in this reservoir drains through the overflow pipe to the storage tank or gravity feed fuel regulator. #### 3. Fuel Injection System **Index to Diagrams**—The following parts are indicated on Figs. 1 and 2 to illustrate the discussion of the fuel injection and governing system. (A) Fuel pipe leading to the injection nozzle. (B) Injection pump plunger. (C) Discharge valve.(D) Injection pump roller. (E) High point of injection cam. F) Injection cam (in fixed relation to the crankshaft). (G) Crankshaft (shown in two sections). (H) Governor cam (loose on the crankshaft). (J) An increase in load will turn the governor cam H in the direction J, closing the suction valve P earlier, thus causing a greater amount of fuel to be injected into the cylinder. (K) A decrease in load will turn the governor cam H in the direction K, closing the suction valve P later, thus causing a lesser amount of fuel to be injected into the cylinder. (L) Leading high point of governor cam for reverse rotation (M) Leading high point of governor cam for standard rotation. (N) Suction valve adjusting screw. O) Suction valve adjusting screw nut. P) Suction valve. (Q) Injection pump suction lower push rod. Fig. 1. Injection Pump and Governor Cam Diagram Fig. 2. Standard Rotation Governor Diagram Injection pump suction upper push rod stem. Relief valve. Governor cam roller. Governor weight; centrifugal force throws the weight (U) out Pivot of the governor weight. (W) Governor spring adjusting screw; tighten to increase the speed and loosen to decrease the speed. (X) & (Y) Governor weight to governor cam links. (Z) Governor spider, with governor weights, clamped in fixed relation to the crankshaft. Fuel Injection System—The fuel injection system includes the individual injection pumps, fuel tubes, and differential fuel injection valves for each cylinder, also the driving and control mechanism for operating the pumps. The pumps are of the cam operated, constant stroke design with suction valves (P), discharge valves (C), and pressure relief valves (S). Fig. 1 shows the assential
parts of one injection purposition. the essential parts of one injection pump with the injection cam (F) and governor cam (H). Identical pumps are provided for each cylinder, but they are all driven by the same injection cam (F), rockers being placed at equal distances around the cam to make this possible. Arrangement of Cylinders and Fuel Injection Pumps— The cylinders are arranged in sequence with No. 1 cylinder at the governor end. The injection pumps are located on the floor of the fuel supply reservoir and are arranged the same as the firing order of the cylinders, with No. 1 pump at the left. Firing Order-For standard rotation the firing order of the cylinders on the different engines is as follows: 3 Cylinder 1–3–2. 4 Cylinder 1–3–2–4. 5 Cylinder 1–4–3–2–5. 6 Cylinder 1–4–5–2–3–6. Timing of Injection Period-The fuel is injected into each cylinder near the beginning of the downward or power stroke of the piston. The proper timing of the injection period in relation to the position of the piston is accomplished by clamping the governor spider (Z) to the crankshaft in such a position that the injection pump plunger (B) is at high point a certain number of degrees before the corresponding piston reaches top center. This is fully explained under "Injection Timing," in Section V. Operation of Injection Pump—As the plunger (B) descends, fuel is drawn into the pump through suction valve (P) which is held open by the governor cam (H). When the high point of injection cam (E) moves under the roller (D) and pivots the rocker, thus moving the plunger (B) up, fuel is discharged back into the suction passages until the suction valve (P) is closed. The suction passages with the suction valve (I) is closed. The suction valves are controlled by governor cam (H), and are closed only when the cam roller (T) is in contact with the depressed portion of the cam L to M. Injection cam (F) and governor cam (H) are placed in such relation to each other that the plunger (B) always starts its movement before the suction valve is closed; thus, the beginning of injection is controlled by the position of the governor weights. With the suction valve P closed, and with the plunger B rising, a pressure is built up in the pump which forces the discharge valve C off its seat. Fuel is then discharged through the injection tube A to the injection nozzle where it is thoroughly atomized and forced into the combustion space. Control of Injection System—Control of the injection system is centered in the hand lever at the right of the fuel pump housing. It has three positions, "Prime," "Run," and "Stop" which are plainly marked on the quadrant. The hand lever is attached to a control shaft which has cams for lifting the pump plungers (B) and the suction valves (P). See Fig. 3. With the lever in "Prime" position, the plungers are being lifted by the control shaft cams; thus the plunger can be worked up and down by moving the lever from "Run" to "Prime" positions which is the operation performed in priming. When priming a cylinder, the piston must be in such a position that the corresponding suction valve is closed. When the lever is in "Stop" position, the lifting cam has been moved away from the pump plungers, and another cam has raised the suction valve off its seat. In this position, no fuel can be delivered to the cylinder, for the suction valve is open continuously. With the lever in "Run" position, both the plunger and the suction valves are free, and the fuel injection is controlled by the governor mechanism. Fig. 3. Fuel Control Mechanism 4. Governing System Governing System—The governing system includes the governor, injection cam (F), and governor cam (H). The governor is of the flyball type, and has two spring regulated weights (U) which pivot about points (V). The injection cam (F) is (U) which pivot about points (V). keyed to the governor spider (Z). The governor cam (H) is mounted on the governor spider too, but is free to rotate within certain limits, being held in position by the two links (X) and (Y) which are connected to the free ends of the governor weights. The entire governing mechanism is clamped on the end of the crankshaft by means of three clamp nuts through the governor spider (Z). Slotted holes in the spider allow the shifting of the governor mechanism in relation to the crankshaft. Operation of Governing System-With the crankshaft rotating, centrifugal force acts on the governor weights (U). With a decrease in load, the engine speed increases, and the governor weights swing out farther. Through links (X) and (Y), this movement is transmitted to the governor cam (H), which is retarded in relation to the injection cam (F). This causes the suction valves (P) to close later, and less fuel is delivered to the cylinders. With an increase in load the opposite is true; the cylinders. thus, the governor automatically controls the amount of fuel delivered between certain limits. Description of Woodward Governor-The governor consists of a rectangular case approximately 1' square and 21/2' sists of a rectangular case approximately 1' square and 2½' high, containing the complete mechanism, including the oil pump, the relay cylinder for operating the fuel control equipment, flyballs for timing, and link mechanism, etc. This unit is mounted in the same place normally occupied by the standard stationary governor and is driven from the end of the crankshaft through a short splined shaft and a pair of bevel gears. In the conventional (direct acting) Diesel engine governor, the flyballs do not only indicate speed, but also serve as a source of energy to move the engine fuel pump cam and suction valve and all intervening connections. Therefore, to make a corrective fuel change requires quite a sizeable frequency or speed change in order to produce the force required to overcome the friction of the governor head, fuel cam, suction valve and other connecting parts. In the Woodward Diesel engine governor, the flyballs are very small by comparison with the conventional type and serve only to indicate speed. The flyballs transmit the speed indication to a small valve that is in perfect hydraulic balance, and it is this valve that controls the oil under pressure to move these mechanical parts required to relocate the fuel setting. Speed changes of less than 1/100 of one per cent will cause corrective movement of the fuel control mechanism. The Woodward governor is stable, that is, it does not hunt when the load is added or taken off, which, in cases where accurate speed control is required, is very desirable. Tests show the governor capable of accepting full load from no load with a maximum speed reduction of 4% and returning to normal speed in approximately three seconds time. The same results are attained in the rejection of load from full load to no load. This type of governor can be used on an engine, where there is only one engine in a plant, or where there are a number of engines in the same plant operating in parallel. Where there are several units operating in parallel, with one engine of sufficient capacity to handle the load changes, equipped with a Woodward governor, and all the other units equipped with a conventional governor, the engine equipped with the Woodward governor will control the speed of all the other engines to check with that maintained by the engine equipped with the Woodward governor. For instructions on the operation of the Woodward governor see Woodward Bulletin W-2 for IC Type Governor. # 5. Lubricating System Automatic Lubrication—Each engine is equipped with an automatic lubrication and circulation system which requires no attention other than to keep an adequate supply of oil in the storage tank. Main Part of System-The main parts of the system are the force feed lubricator, pressure type oil filter mounted on the clean oil storage tank, clean oil and used oil sumps each fitted with a reciprocating pump and strainer, oil rings and wells for each main bearing, oil reservoir in the governor case, and the connecting tubes and piping. Lubrication of Pistons, Piston Pins, and Crankpin-In operation, the clean oil pump draws filtered oil through a strainer and delivers it to the force feed lubricator which supplies lubrication to the pistons piston pins, and crankpin. Referring to Fig. 11 it will be noted that two of the lubricator feeds deliver to oil collectors located in the piston at each end of the piston pin. These collectors furnish lubrication to the piston pin. A third lubricator feed leads into the front or scavenge air transfer side of each cylinder for the lubrication of the piston, and the fourth feed supplies lubrication to the crankpin bearing by means of a ring oil collector bolted to the crank web. This collector is connected to a drilled passage in the crank web and pin which leads to the bearing. Each feed to the engine is an individual feed from the lubricator. Used Oil Filtered and Returned to Tank-The used oil from the pistons, piston pins and crankpin bearings drains to the bottom of the respective crankcases and is drained through pipes to the used oil sump at the governor end of the engine. The used oil pump transfers this oil to the oil filter where it is thoroughly cleansed, and then delivers it to the clean oil storage tank where it is again ready for circulation. Under no circumstances should oil ever be allowed to accumulate in the crankcases. Commercial lubricating oil fitters may be used when con- nected and operated as directed by the filter manufacturer. Lubrication of Governor Mechanism—The clean oil pump delivers more oil than is required by the force feed lubricator, so the excess oil overflows to the governor case, lubricating the lubricator drive eccentric and rocker bearings. and 3 cylinder engines, having fewer cylinders and bearings to lubricate, have a larger quantity of oil overflowing from the lubricator. This overflow is more than is required for the rocker bearings and
lubricator drive eccentric so on the 1, 2 and 3 cylinder engines an overflow bypass is provided to return a portion of the oil directly to the clean oil sump. The oil level in the governor case is maintained at such a height that the splash created by the dipping of the governor spider thoroughly lubricates the governor mechanism, injection cam, push rods, etc. An overflow pipe permits any excess oil to flow back to the clean oil sump. Lubrication of Main Bearings-The oil level in each of the crankshaft main bearing oil wells is automatically maintained by means of a cored passage between the governor case and the governor-end main bearing oil well and an equalizing pipe connecting this oil well to each of the other wells. Lubrication is supplied to the main bearings by means of oil rings which dip into the oil wells beneath. Operation of these rings can be observed and checked by opening the cover provided in the top of each bearing cap. Oil Level Sight Gauges-All engines are equipped with a glass sight gauge at the governor end of the oil equalizer pipe for checking the oil level in the governor case and oil wells. The 4, 5 and 6 cylinder engines are provided with an additional gauge at the flywheel end of the equalizer pipe. Floating Dredge Service—When the engine is to be used for floating dredge service where the crankshaft is not perfectly horizontal at all times, the main bearing oil well equalizing pipe must be omitted and an oil sight gauge be provided for each oil well. Also the cored passage between the governor case and the governor end main bearing must be plugged. When an order specifies that the engine is to be used for floating dredge service, this special oil well piping will be installed at the factory without extra charge. The main bearing oil rings will function satisfactorily in this service as experience has shown that the engine may be slightly tilted end-wise without interfering with the action of the rings. If the engine is to be direct connected to a direct current generator or magnetic clutch, brass oil rings must be used, as a magnetic attraction is sometimes encountered which tends to make the steel rings stick. Brass oil rings will be furnished for special direct current installations without extra charge. 6. Cooling Water System General—An adequate supply of soft water is essential to the satisfactory operation of an internal combustion engine. Only clean soft water or water which is free from scale forming ingredients, should be used in the cooling system. Even a thin layer of scale or dirt on the cylinder jacket walls will act as an insulator and cause overheating and possible breakage. If clean rain water is available, it is suitable for cooling purposes without previous treatment. Salt water should not be used for cooling, as it may cause corrosion in the water jackets. Any hard water containing lime or magnesia is almost certain to cause scale and must be treated. To prevent scale deposit, the cooling system recommended, is the closed system using only soft water in the engine jackets. Cooling System—The cooling water system on these engines consists of the cooling water passages in the cylinders and heads, and the necessary equipment for circulating and cooling the water, such as pumps and heat exchangers. The presence of combustion products in the cooling system, due to defective or loose cylinder head gaskets will form acids which will attack the metal surfaces. Gaskets must, therefore, be kept tight and in good repair. Pump glands should be well packed and tight to prevent infiltration of air and, wherever possible, positive pressure should be placed on the suction side of the pump. 7. Air Starting System Air Starting System—Compressed air is used to start these engines. The air starting system consists of an air start mechanism on the engine for distributing and admitting the compressed air to the cylinders, an auxiliary air compressor, steel tanks for storing the compressed air, and the necessary piping and fittings. Starting Mechanism—Fastened to the left side of the pump case housing is the air lever which controls the air start mechan- ism. See Fig. 4. This lever is attached to a control shaft which has came for raising or lowering the air valves and to which is fastened the disc shut off valve. The air lever has two positions "Start" and "Run." These are plainly marked on the quadrant. Each cylinder head on those cylinders which receive starting air is provided with an air starting check valve No. 854B. This valve is so arranged that it is opened by the compressed air during its admission into the cylinder, but is closed at all other Operation of System—When the lever is moved to the "Start" position, the disc shut off valve is opened admitting compressed air to the distributor. At the same time the cams under the air starting valves are moved out of position, and the valves are lowered to their respective seats and brought into contact with the air starting cam. As the engine revolves, the air starting cam lifts the valves in the proper order, and air is admitted to the corresponding power cylinder during a portion of the downward stroke of the piston. Fig. 4. Air Control Mechanism (6510G) When the engine has started, the air lever is moved to the "Run" position. In this position, the disc valve is closed, thus stopping the admission of air from the starting tanks, and the air starting valves are lifted off their seats. With this arrangement, the cam rollers do not come in contact with the cam while the engine is in operation. The disc valve and the lifting cams are interlocked in such a manner that air cannot be admitted to the distributor while the starting valves are off their seats. Fig. 5. Scavenging Diagram 99YKA164 8. Scavenging Air System The scavenging air is supplied by the piston acting as a pump. During the upstroke of the piston, air is drawn into the engine in one of the following ways. (a) From outside the engine room through an underground conduit into the engine base. (b) From the engine room through a screen located on top of the engine base at the flywheel end. When the air is supplied to the engine by method (a), which is the preferred arrangement, the intake opening on top of the base is shut off with a blind flange. When the air is supplied to the engine by method (b), one intake screen is furnished on 1, 2 and 3 cylinder engines, and two on the 4, 5 and 6 cylinder engines. After entering the engine base, the air is drawn into the crankcase through an automatic air valve during the upstroke of the piston, and is compressed on the downstroke. Arrows on Fig. 5 indicate the flow of scavenging air through the engine. Air Filters—Many installations are made under conditions which require that the air supply be filtered before it enters the engine. Cement mill, flour mill, and rock crusher installations are examples. The self cleaning panel type or oil bath filter is recommended; however, the fixed panel type filter can be used if required for a particular installation. #### 9. Exhaust System General—In the discussion under "Type and Cycle," the manner in which the exhaust gases are expelled from the cylinders is explained. Since the satisfactory operation of any Diesel engine depends a great deal upon the arrangement for conducting these gases to the atmosphere, it is highly essential that the exhaust system conform to one of the approved arrangements as outlined under "Installation Instructions." If any departure from these arrangements seems necessary, approval must be obtained from Fairbanks, Morse & Co. **Exhaust Temperature**—Under normal full load operating conditions with the engine in good condition and proper adjustment and with an approved exhaust arrangement, the exhaust temperature should be approximately 390°F. to 420°F. This should be determined for each individual installation. The temperature will vary to some extent with the temperature of the incoming air. **Exhaust Arrangements**—In conducting the exhaust gases from the engine to the atmosphere, there are four approved arrangements as follows: (a) Underground Conduit—This arrangement, as shown in Fig. 16, is preferred. It provides especially favorable exhaust and scavenging conditions under practically all field applications, and results in the most satisfactory engine operation together with the best appearance of the installation. This arrangement consists of a reinforced concrete conduit extending lengthwise of and adjacent to the foundation. Individual pipes from each cylinder lead through expansion joints into this conduit which in turn is vented to the atmosphere through a stack. It is very important that the exhaust inlet and outlet connections to the conduit be at the extreme ends so that no dead spaces will exist, since under certain conditions such "dead ends" will seriously interfere with the engine exhaust. The conduit must be provided with a drain connection, preferably so arranged that a fixed level of water can be maintained in the bottom. This will effectively quench all sparks brought in with the exhaust gases. (b) Exhaust Pot Arrangement—This arrangement, shown in Figs. 19 and 20, is satisfactory for installations of 2 or 3 cylinders where it is permissible to run an exhaust pipe through a side wall or through the roof, or where the installation of an underground conduit is undesirable. For multiple installations it is essential that individual exhaust stacks be installed with each exhaust pot, and where exhaust washing or silencing is required, an individual washer or silencer for each stack. This arrangement however, is not recommended for 4, 5 or 6 cylinder engines. - (c) Exhaust Manifold Arrangement—This arrangement is used for engines with two or more cylinders where a single stack is necessary or desirable. An exhaust silencer may be installed if desired. - (d) Dredge Individual Elbow Exhaust Arrangement— This arrangement, shown in Fig. 21, is suitable
only for dredge, drag line, and shovel installations where space requirements and weight must be kept to a minimum and where the noise of the exhaust is not particularly objectionable. #### 10. Synchronizer The synchronizer is furnished as special equipment and may be installed on the engine in the field. For instructions on installing the synchronizer in the field, see "10. Synchronizer" in Section II. **Purpose**—When the engine is to be used in driving an alternator in parallel with other synchronous machinery, the no load speed must first be reduced to normal full load speed value before the alternator can be paralleled. This can be accomplished by means of a synchronizer as described below. Description—The synchronizer consists of a mechanism which includes two coiled springs attached to the governor weights in such a manner that they oppose the action of the governor springs. A handwheel is provided by means of which the tension in the synchronizer springs can be varied. An indicator dial on the side of the synchronizer shows the position of the control at all times. The handwheel can be locked in any position by means of a knurled pin. The no load speed of the engine can be reduced approximately 25 r.p.m. by means of the standard synchronizer springs. # II. INSTALLATION INSTRUCTIONS # 1. Layout of Plant Floor Plan—Lay out the entire floor plan, carefully locating the exhaust and cooling water arrangements, foundations for auxiliaries, etc., before erecting the engine. Locate all auxiliary equipment so that the piping will be as short as possible. Leave plenty of space around the engine and auxiliaries, and provide for development and future extensions. Engine Rotation—The standard rotation of the engine is clockwise, when facing the engine at the governor end. When Fig. 6. Piston Removal Diagram (99YKA32) 9'-9 5/8" 4'-73/8" 3'-6" # HEAD ROOM REQUIRED FOR REMOVING PISTONS STANDARD LOW MOUNTED ENGINES | SPECIAL HIC | H MOUN | TED ENG | NES | | |-------------|--------|-----------|-----------|-------| | 14"x17" | 15'-2" | 8'-6 5/8" | 4'-7 3/8" | 2'-3" | | 12"x15" | 13′-8″ | 7'-5½" | 4'-21/2" | 22" | | ENGINE SIZE | A | В | C | D | 14"x17"..... specially ordered, the engine can be furnished for reversed rotation. Fig. 22 shows the engine with standard and reversed rotations. Cylinder Position—The standard position of the cylinder is with the exhaust ports on the right-hand side when facing the engine at the governor end. See Fig. 22. When specially ordered, the engine can be furnished with the exhaust connections at the left-hand side. Completely Reversed Engine—When specially ordered the engine can be furnished with both reversed rotation and reversed cylinders. Overhead Clearance for Removing Pistons—When laying out the plant it is important to provide a convenient means for removing the cylinder head, piston, etc., in order to facilitate cleaning or making repairs on these parts. Provide a suitable overhead hoist as illustrated in Fig. 6, keeping in mind that the hoist should travel, at least in the direction parallel with the axis of the engine crankshaft, and if possible, transversely as well. The overhead clearance required for removing the piston and connecting rod is shown in the table accompanying the diagram. The dimension given in the cut for the space occupied by the hoist is 2'-0", but this can be reduced several inches by the use of an army type hoist. Size of Hoist—The following table indicates the size of hoist required when removing various parts of the engine. For general servicing work, a hoist of sufficient capacity to remove the cylinders will be suitable. For removing the crankshaft or flywheel, the size must be increased accordingly. #### SIZE OF HOIST (TONS) REQUIRED TO REMOVE THE FOLLOWING PARTS | Engine Bore & Stroke | 12"x15" | | | 14"x17" | | | | | | |----------------------------------|---------|------|---|---------|---|---|---|---|---| | No. of Cylinders | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | Cylinders | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Crankshaft | 1 | 11/2 | 2 | 1 | 2 | 3 | 3 | 3 | 4 | | Flywheel (Belted
Commercial) | 11/2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | | Flywheel (Belted
Electric) | 3 | 1½ | 3 | 4 | 3 | 3 | 4 | 4 | 4 | | Flywheel (Dir. Con.
Electric) | 4 | 2 | 2 | 5 | 4 | 4 | 4 | 4 | 4 | Piping—To improve the general appearance of the plant, lay the fuel, water, and air pipes below the floor level wherever possible. Make a channel in the floor, to receive the pipes, and cover it with floor plates, or pack the channel with sand and cover the top with a thin layer of cement. If necessary to remove or repair the pipes, the thin layer of cement can be broken easily, the pipes repaired, and the cement readily replaced. It is not advisable to cement any pipe solidly into a wall or floor. Lighting—Provide an abundance of light on all sides of the engine at all times. This is important from the standpoint of safety as well as economical operation. A well lighted engine room makes it possible for the operator to detect promptly, any slight irregularity of operation and to make the necessary adjustments before any serious results develop. #### 2. Foundation Standard Mounting of Engine—The standard mounting for any 14"x17" engine is that in which the engine base is set upon a concrete foundation, projecting 7 inches above the floor line. On a 12"x15" engine, the foundation projects 4 inches above the floor line. For either size of engine, a pit must be provided for the flywheel and belt pulley, as shown on the foundation plan furnished for each engine. Drains should be provided for all pits. Special Mounting of Engine—When specially ordered, a foundation plan will be prepared showing the engine mounted on a higher foundation with the flywheel and pulley above the floor line. With this mounting, no pit is required. Fig. 7. Foundation from Governor End Generator Mounting—On a direct connected outfit, the engine foundation is extended to support the generator, as shown on the foundation plan furnished for each engine. Foundation Plan—Prepare the foundation in accordance with the foundation plan furnished for each engine. This plan gives the location of the foundation bolts, driving belt, exhaust equipment, and all outside dimensions. Follow the dimensions carefully. Extend the foundation deep enough into the ground to secure a solid footing; that is, one that will not settle when the engine is mounted. The foundation plan shows a depth that is sufficient for solid ground, but Fairbanks, Morse & Company will not be responsible for the failure or inadequacy of a foundation. Provide a space of at least three feet all around the engine for easy access by the attendant. Foundation Isolation—In all installations where engine vibrations are undesirable, such as in or near hotels, residences, offices, etc., it is recommended that the foundation be properly isolated. For information regarding such isolation, refer to the Manufacturing Division. Isolate Exhaust Conduit—When an exhaust conduit is used, it should be isolated from the engine foundation. The usual practice is to place an inch board between the engine foundation and the exhaust conduit, and to leave this board in position after the remainder of the form is removed. Foundation Bolts—Set the foundation bolts in tubes or boxes, extending from the top of the foundation well down into the concrete, with the ends of the foundation bolts extending above the foundation, the distance shown on the foundation plan. The object in using the tubes is to allow the foundation bolts to be sprung slightly, so as to enter the holes in the engine base. It is therefore important to exclude all concrete from the tubes while pouring the foundation, as the bolts cannot be sprung if imbedded in the concrete. Fill the tubes with a thin, rich grout at the time the finish grouting is poured. **Reinforcing Rods**—The foundation may be strengthened by the addition of reinforcing rods, but their use is not considered necessary if the foundation is properly constructed. # 3. Installing the Engine and Drive Equipment Erector's Level—The erector should use a good level. It should be at least as accurate as the L. S. Starett No. 98 machinists' level and have a cross level in the base. Check it for each job by trying it on a smooth surface and noting the position of the bubble with respect to the graduations on the bubble tube. Reverse the level and again note the position of the bubble. If any variation exists, correct the error before attempting to level the engine. An 8 inch level is the longest that can be used on certain parts of the engine. **Examine Drain Pipes**—Before the engine is set on the foundation, examine the drain pipes from the crankcase to the sump box to see that they have not been loosened or damaged in transit. Also check the inter-connection pipes between bearing wells to see that these have not loosened. Clean Top of Foundation—The air used by the engine is drawn in from the space below the crank case and above the concrete capstone portion of the foundation. Before the engine is set, remove all dust, chips, dirt, etc., from the under side of the lower base and the top of the foundation. If dirt in the air reaches the cylinders, it will cut the working surfaces. Installation Procedure may be Modified—The following procedure for installing the engine and driven unit covers general conditions, and may require modification to apply to a specific installation. Some erectors may wish to level and grout in the engine first, and the drive equipment later, which procedure will be entirely satisfactory. Leveling and aligning the complete installation first and grouting later is suggested, because it is thought that by so doing any errors may be more easily rectified. Any procedure must produce the same final results; that is, all crankshaft journals must be dead level, and the extension shaft must be aligned so that there is no distortion
of the crank adjacent to the flywheel in any position of the crankshaft. Installing Flywheel—The flywheel should be placed on the crankshaft before setting the engine on the foundation, unless the flywheel pit is wide enough to permit placing the flywheel after the engine is in position. Wedge the hub apart, and place the flywheel on the crankshaft in the position shown on the foundation plan, being careful to align the flywheel keyway with the shaft keyway. In an installation using an extension shaft and outboard bearing, when the flywheel is in its proper location the crankshaft extends through the hub about ¾ inch. On an installation using an overhung flywheel, the wheel is moved closer to the main bearing and the shaft extends through the hub about 2¾ inches on the Model 32E12 engine and 2½ inches on the Model 32E14 engines. Remove the wedges, and tighten the clamp bolts temporarily so that the flywheel will be tight on the shaft while the engine is being set on the foundation. Fit and drive the key. Lining up of the hub faces and final tightening of the clamp bolts should be done when the extension shaft is being fitted. Set the Engine—The engine should now be placed on the foundation. Support it with leveling screws and steel bearing plates, allowing clearance for grouting according to the foundation plan furnished with the engine. The leveling screws should consist of ¾ inch by 5 inch, cup point, 1 quare head set screws. The steel bearing plates should be of such size and shape as to afford a suitable bearing surface and be installed in such a manner that they can be left in the grouting. Level the Base—The base should be leveled first. On each side of every main bearing, scrape sufficient paint from the top of the lower base to provide a smooth bearing for the level. Place the level on each of the surfaces and adjust the leveling screws until an accurate crosswise and lengthwise level is obtained. In some cases, when leveling a base, it may be necessary to draw down on one or two of the foundation bolts. Flywheel—If the flywheel has not been placed on the crank-shaft, install it now. Installing Bearing Pedestal, Sole Plate and Outboard Bearing—Before installing the outboard bearing, make certain that the lower shell is scraped to a good bearing surface throughout the entire length. In cases where it will not be necessary to remove the extension shaft after it is fitted, the bearing pedestal, sole plate and lower half of the outboard bearing should be placed in position before the shaft is bolted to the flywheel. The bearing should be placed low enough temporarily so that it will not interfere while the extension shaft is being fitted. Where there is sufficient clearance at the end of the shaft, the lower half of the bearing may be installed after the shaft is fitted, by sliding at lengthwise along the shaft. Fitting Shaft Extension—The shaft extension should now be fitted to the engine. Loosen the flywheel hub clamp bolts and drive in a wedge lightly. Then bolt the shaft extension to the hub. This will line up the faces of the hub by pulling them up against the flange of the extension shaft. Remove the flywheel wedge and tighten the clamp bolts. It is essential to fit the hub faces accurately to a good contact over the entire bearing surface and so that the extension shaft will run true. Mark the flange and hub so that if the extension shaft must be removed it can be replaced in the original position. Fitting Flexible Couplings—If the extension shaft is connected to the engine by means of a flexible coupling, instead of by a rigid flanged coupling, use the same care in aligning the flexibly coupled shaft as would be used in the case of a rigidly coupled shaft. Then the flexible coupling takes care of any misalignment due to expansion or to wear of the parts. The flywheels used with installations having a flexible coupling are so light that the bending effect on the crankshaft can be disregarded. Aligning Outboard Bearing—When the extension shaft has been fitted, the outboard bearing should be aligned. All parts such as pulley or rotor and stator should first be in position. Then, with several shims between the bearing and sole plate, so that vertical adjustment can be made in both directions, adjust the position of the bearing to make the following conditions true. The journal next to the flywheel should be dead level, and the distance between the last two crank webs should be exactly the same when the crank is in the top and bottom positions. Measurements should be taken with an inside micrometer or an instrument equally accurate, preferably a Starrett #696 Crankshaft Distortion Gauge. See Fig. 8 which illustrates incorrect and correct alignment. The two upper figures show the distortion of the crank next to the flywheel when the outboard bearing is placed on the same level as the main bearings. Dimensions "A" and "B" indicate the difference in the measurements for the two vertical positions of the crank. The lower figure shows the correct alignment. Dimension "C" will be the same for all positions of the crank. Horizontal position of the outboard bearing may be checked by measuring the distance between the last two crank webs when the crank is in the two horizontal positions. After the outboard bearing is installed and the extension shaft is fitted to the engine, place the distortion gauge between the cheeks of the cranks of all the cylinders. The distortion gauge should read very close to zero at all points. A deviation from a zero reading will indicate that the shaft is not bearing properly in the main bearing. Adjustment of the engine base leveling screws should be made until the deviation is corrected. Filling Rail Jack Cutouts—After the engine is set fill the rail jack cutouts with ordinary concrete and allow to set before the grouting is poured. Finishing Grouting—Re-check the alignment of the engine and extension shaft, then pour the finishing grouting. The foundation plan calls for finish grouting to be poured after the engine is carefully leveled and blocked in place. Grouting should also be poured under the outboard bearing sole plate and the generator stator foundation (if used). Make this finishing grouting from one part of cement and two parts of sand, with sufficient water added to make it flow freely. Build a board form around the top of the foundation to retain the grouting. Extend the grouting ³/₄ to 1 inch up on the base. When the grouting has Fig. 8. Alignment Diagram (This diagram is greatly exaggerated for illustrative purposes.) set slightly, remove the form and cut away the excess grouting outside of the base. Pack the grouting in under the edge of the base, and finish the edge with a bevel. The grouting should flow over the whole surface of the foundation. To improve the appearance of the foundation above the floor, plaster it with a rich mixture of cement and sand. After the grouting is hard, remove the leveling screws and make sure that the anchor bolt nuts are tight. Place a cork in each leveling screw hole and trim it flush before painting. Final Check of Alignment—When all work as outlined above has been completed, make a final alignment check of the entire installation before starting the engine. # 4. Fuel Supply System Since the fuel tank and the suction and overflow pipes (and the gravity feed fuel regulator, when used), are the only parts of the fuel supply system that are not incorporated in the engine, these parts are the only ones that need be considered under the installation of the system. (a) Installation of System without Gravity Feed Fuel Regulator. Fuel Tank Location—A galvanized steel fuel supply tank is required for each engine. Connect it to the engine with the suction pipe and overflow pipe as shown in Fig. 9. Locate the fuel tank outside of the building in a covered pit accessible for filling, and place it in a horizontal position so that the suction lift can never be greater than 10 feet. This applies when light fuels are used; for heavy fuels, use heaters, larger pipes or less suction lift Place unions close to the regulator, in all pipe lines entering it. Extend the pipe, connecting the overhead tank, with the regulator reservoir, about six inches into the tank to permit any sediment in the fuel to settle in the bottom of the tank so as to prevent any foreign matter from entering the fuel regulator. It is advisable to provide a gauge glass on the overhead tank to indicate the amount of oil in the tank and also to show any water that may accumulate in the bottom of the tank. This water should be drained off before it reaches the level of the top of the fuel outlet pipe. Piping—When the tank is furnished by Fairbanks, Morse & Co., the proper connections for suction and overflow pipes are included. Use the size of pipe to fit these connections. In connecting the fuel tank with the engine, wash out every piece of pipe or joint with gasoline or kerosene to remove all scale and loose matter, which, if left in the pipes, would interfere with the proper working of the valves. All tanks should be provided with drains for removing residue and water and for periodic cleaning. When the piping is installed, three-way cocks should be placed in both the suction and overflow piping so that fuel consumption can be checked from time to time. A check valve must be provided in the fuel suction line to prevent the fuel from draining back into the fuel tank when the engine is stopped. It is very necessary that all fuel be strained when filling the fuel tank. For this purpose, use a 12 in. funnel fitted with 40-mesh brass wire screen. Joints—Make all fuel pipe connections carefully and use shellac to insure tight joints. Thoroughly clean the pipe threads with gasoline to remove all trace of oil before applying the shellac. Shellac will not stick to an oily surface, consequently an oil tight joint cannot be made unless the shellac is applied to clean threads. Overflow
Pipe—The engine is shipped with a union attached to the lower end of the overflow pipe from the fuel reservoir. To this union connect the return pipe and carry it down to the floor or through the floor as required, and back to the fuel tank with a gradual descent for the free return of surplus fuel. Storage Tank Capacity—It is advisable to install a storage tank having the capacity of a tank car, and placed at such a level that the fuel will flow by gravity into the smaller supply tank. #### (b) Installation of System with Gravity Feed Fuel Regulator. Gravity Feed Fuel Regulator—The gravity feed fuel regulator is special equipment and is necessary in installations where the fuel storage tank is located above the level of the injection pump. The function of the regulator is (1) to control the amount of fuel supplied to the auxiliary fuel pump, (2) to provide for the overflow from the auxiliary fuel reservoir, (3) to provide for the overflow from the fuel pumps, and (4) to provide for the preheating of the fuel by means of the outlet water from the engine water jacket. Preheating is necessary only when the fuel is a very heavy oil or when it is exposed to low temperatures. Clean Pipes and Connections—In connecting the regulator to the engine, carefully wash with gasoline or kerosene, each pipe and fitting used in order to remove all dirt or scale, which, if left in the piping, would seriously interfere with the operation of the valves. Pipe Connections—All water and fuel pipe connections must be absolutely tight. Use shellac on fuel pipe joints and white lead on water pipe joints. **Checking Fuel Consumption**—A three-way cock can be installed in the fuel suction line (Fig. 9) to afford a means of checking fuel consumption. Arrangement of Equipment—Fig. 10 shows a typical arrangement of the regulator and piping. The regulator may be placed on a low bracket on the wall, on the floor, or in a pit below the floor level. Make dimension A about nine inches deep. In any case, the regulator must be placed below the fuel connections on the engine. Connect the overhead fuel tank to the regulator reservoir through the lower hole, tapped for ¾ inch pipe. Place a shut-off valve in this line and keep it closed when the engine is not operating. Connect the fuel overflow pipe of the engine to the upper hole, tapped for ¾ inch pipe, in the regulator reservoir. Connect the fuel suction pipe on the engine to the middle hole, tapped for ½ inch pipe, in the regulator reservoir. Fig. 9. Fuel Piping Diagram Fig. 10. Gravity Feed Fuel Regulator Diagram # 5. Lubricating System The pressure type oil filter and clean oil storage tank are mounted near the engine and connected to the clean and used oil sumps as shown in Figs. 11 and 12. All other parts are either attached to or incorporated in the engine itself; so installation work on the lubricating system requires only the proper setting and connecting of the filter and storage tank. Necessity for Proper Oil Levels—As previously explained under the operation of the lubricating system, the oil in the governor case and each of the main bearing oil wells is maintained at a common level by means of equalizing connections. The level is maintained by the clean oil circulating pump, and is determined by the vertical overflow pipe leading to the clean oil sump. For best operation, the oil level in the governor case should coincide with the upper end of the overflow pipe. If the level in the engine is allowed to drop because of an insufficient Fig. 11. Lubrication Diagram supply to the clean oil pump, the governor spider and main bearing oil rings will swing clear of the oil and lubrication will cease. On the other hand, if the level is excessively high, oil will overflow from the bearing oil wells and flood the crankcases. Fig. 12. Piping at Lubricating Oil Sump Install Storage Tank at Proper Level—In order to maintain the correct oil level, the clean oil storage tank must be so located that when filled nearly to the top of the sight gauge glass, the level in the tank will be slightly lower than the upper end of the governor case overflow pipe. This condition will be met when the maximum level in the storage tank is not less than 8 inches below the center line of the engine crankshaft as indicated in Fig. 11. An adequate supply of oil to the clean oil circulating pump will be assured if the level in the storage tank is not allowed to drop lower than 2 inches above the connection to the clean oil sump. By so locating the storage tank that the bottom is 22 inches below the center line of the engine crankshaft, the upper and lower permissible oil levels will be within range of the sight gauge. If desired, the gauge may be marked at the maximum and minimum levels for ease in checking. **Piping**—Connect up the piping as shown in the two diagrams. Details of the piping at the lubricating oil sump, are shown in Fig. 12. The $\frac{1}{2}$ " overflow pipe from the sump should be run to some point where the oil may be collected. Oil will overflow only in case the used oil pump should fail to operate. The other connections are self-explanatory. #### 6. Cooling Water System #### WATER SUPPLY An adequate supply of cool soft water is essential to the satisfactory operation of an internal combustion engine. Only clean soft water or water which is free from scale forming ingredients, should be used in the cooling system. Even a thin layer of scale or dirt on the cylinder jacket walls will act as an insulator and cause overheating and possible breakage. Any hard water containing lime or magnesia is almost certain to cause scale and must be treated. If clean rain water is available, it is suitable for the soft water circuit in closed systems. However, it is recommended that any water used for the soft water system be treated. Do not use rain water for the raw water circuit unless it is treated to prevent fungus growths. The only system recommended is a closed system in which only soft water is circulated through the cylinder jackets and in which the soft water is cooled by means of raw water and some form of heat exchanger. #### TREATMENT OF HARD WATER When the cooling water supply is known to contain scale forming ingredients, a reliable manufacturer of water softening systems should be consulted. Two methods of water treatment are in general use, the proper one of which should be prescribed by a competent authority, after an analysis and survey has been made of the particular case in question. Such a diversity exists in the characteristics of water found in different localities that no intelligent recommendations can be given until all data are available. The general methods of water treatment are: - (a) Chemical Treatment. - (b) Zeolite Treatment. Method (a) consists of the addition of certain chemicals to the water which react with the salts, sulphates, carbonates, etc., held in solution. This reaction precipitates most of the scale forming ingredients so that they can be removed by settlement in separate tanks before putting the water in the cooling system, or it may leave some of them in solution, but so change them that no scale will be deposited. Method (b) consists of forcing the water to be softened through a bed of "Zeolite" sand. This mineral, commonly known as the green sands of New Jersey, has the property of removing calcium and magnesium elements from the water and replacing them with sodium, or, in other words, changing the scale forming lime and magnesia salts to sodium salts, which are not scale forming. By properly regulating the flow of water through the "Zeolite" sand scale forming salts can be removed. After a certain amount of water has been treated, the active sodium in the Zeolite becomes so far exhausted that the water is no longer properly softened. The Zeolite is then rejuvenated by passing brine (made from common salt), through it. During this process, the lime and magnesia elements held by the Zeolite are exchanged for the sodium element in the salt, the lime and magnesia being carried away to waste as calcium and magnesium chlorides. After a short time, usually from 10 to 25 minutes, the Zeolite will have resumed its original state and the treatment can be stopped. Salt consumption and the frequency of regeneration will be governed by the hardness of the water and the amount to be treated. If uninterrupted service is required, either a duplicate plant or a storage tank of proper capacity must be installed. Treated jacket cooling water which is recooled and recirculated will require a certain percent of make-up to replace evaporation, which tends to concentrate the scale forming salts in the system. Concentration can be held at a safe value by wasting a portion of the water in the system and replacing with freshly treated water, the amount wasted depending upon the rate of evaporation and the degree of elimination of scale forming salts from the treated water. As permissible concentration is governed in every case by the chemical character of the treated water, no general statement can be made as to either a safe value or the method to be employed in determining it. These points must be determined by the manufacturer of the water treating system in use and recommendations made accordingly. # WATER CIRCULATION THROUGH THE ENGINE Main Inlet Manifold—Cooling water is distributed to each cylinder and cylinder head water jacket by means of a main inlet manifold located on the exhaust side and connected to each cylinder at the lowest part of the water jacket. Individual regulating valves for balancing the jacket water temperatures of the several cylinders are installed in the main inlet manifold on earlier engines. By means of pipe connections between the main inlet manifold and the cylinder heads a portion of the water is diverted into the cylinder head water jackets. Outlet Manifold—Cooling water is discharged from the cylinders through individual overflow pipes connected at the
tops of the cylinder heads, and then flows into the outlet manifold connected to the cylinder heads. Provision should be made for venting at the highest point of each cylinder. Fig. 13 shows a suggested method. #### COOLING WATER CIRCULATION RATES In determining the correct rate of water circulation for the proper cooling of a Diesel engine, consideration must be given to three fundamental factors as here outlined. - (a) Sufficient water at correct inlet and outlet temperatures must be circulated in order to maintain workable operating temperatures of cylinders and pistons through the dissipation of excess heat. This is governed by the power rate of the engine engine or "load", desired operating temperature and temperature of the water entering the jackets. - (b) A certain minimum rate of circulation must be maintained in order to avoid sluggishness in any part of the system. Should this rate be materially reduced, steam pockets with consequent "hot spots" and possible local overheating of parts will result. Refer to the piping diagram in Fig. 14 for soft and raw water flow rates. (c) The difference between the circulating water inlet and outlet temperatures must be restricted to a maximum allowable value of 10° F. in order to avoid mechanical distortion and excessive expansion strains. The recommended operating soft water outlet temperature is 130° – 135° Fahrenheit with a maximum permissable, temperature of 140° Fahrenheit. #### CIRCULATING PUMPS Centrifugal Pumps—Centrifugal pumps are recommended for circulation of cooling water when the total dynamic head is within their range of performance. When the head is beyond this range or if a suction lift is imposed then positive displacement pumps must be used. Positive Displacement Pumps—When positive displacement pumps are used they must be fitted for hot water. A pressure relief valve must be installed in the discharge line close to the pump without a shut-off valve between it and the pump. Set the relief valve 5 pounds per square inch higher than the discharge pressure. Location of Pumps—All centrifugal pumps should be located in such a position that the top of the pump is below the low water level. #### GENERAL INSTALLATION DATA ON COOLING SYSTEMS Manifold Pipe Connections—Details of the manifold pipe connections are shown on the pipe connection plan which is furnished with each engine. Pipe sizes tabulated on this page refer to the main inlet and outlet pipes. The piping should be run down into a trench under the floor, by the shortest route; otherwise, run the pipes horizontally to the wall and then down, making the neatest and most convenient arrangement possible. Emergency Cooling Water Connection—When running water under pressure or from a high tank is available, the piping should be so arranged that in an emergency, the regular cooling water supply can be shut off and the running water used instead. Such a precaution may eliminate costly shut downs, if repairs in the cooling water system should become necessary. The emergency inlet and outlet connections may be made at the opposite ends of the manifold from that used for the regular cooling water system, or the emergency supply may be run into the overhead tank Engine Control Valves—The inlet water manifold on earlier engines is equipped with control valves at each cylinder. These valves should be wide open when the engine is first started. After the temperatures have become constant, the valves on the cylinders having the lowest temperatures should be adjusted until the outlet temperatures of all cylinders are uniform. Water Supply Valves—A valve should be placed in the main supply line as shown in Fig. 14. This valve should not be used to regulate the flow of water to the engine, unless the rate is in excess of the recommended rate. Water Inlet Valve—When the emergency cooling water connections are made at the opposite end of the manifold from the regular connections, a valve should be placed in each inlet line. With this arrangement, the emergency inlet will be closed when the regular inlet is being used, and vice versa. "Open" Discharge Connections—Earlier engines were provided with a open overflow pipe for each cylinder. These overflow pipes connected to the upper part of the cylinder heads and discharged into individual funnels attached to the water outlet manifold. "Closed" Discharge Connections—Individual closed discharge connections are provided from the cylinder heads to the water outlet manifold. These pipes have two tapped holes, Fig. 13. Water Outlet Manifold Vent Piping | | | | | ICXI | 9 | |-------|------|------------|-------|------|---------| | NO. | | PIPE | SIZES | | GAL. OF | | CYL. | H.P | "A" | "B" | | IN ENG | | 2 | 120 | 2 | 2 | 60 | 28 | | 3 | 180 | 25 | 25 | 90 | 40 | | NO. | T.,, | PIPE SIZES | | | GAL. OF | | 1/0 | 1 | PIPE . | SIZES | GRM. | GAL. OF | | CYL . | H.P. | "A" | "B" | | IN ENG | | 2 | 150 | 25 | 22 | 75 | 38 | | 3 | 225 | 3 | 3 | 110 | 55 | | 4 | 300 | 3 | 3 | 150 | 75 | | | | | | | | ALL PIPE SIZES BASED ON 50 FEET OF PIPE AND 10 ELLS. USE NEXT LARGER PIPE SIZE IF THESE VALUES ARE EXCEEDED. 4 225 115 AUXILIARY PUMP IS OF SAME SIZE AS RAW AND SOFT WATER PUMPS ALL FIGURES IN TABLE ARE FOR 12x15-360 RPM. OR 14x17-300 RPM. AND CORRESPONDING HORSEPOWER. USE THE SAME PIPE SIZES FOR ENGINES RUNNING AT LOWER SPEEDS. MAKE-UP AND EXPANSION TANK OF ABOUT 50 GAL. CAPACITY INSTALLED ABOUT 5'-0" ABOVE CYLINDER HEAD. USE GATE VALVES IN ALL CASES THIS IS A DIAGRAMMATIC PIPING LAYOUT. 30YJ84C Fig. 14. Cooling System Piping Diagram one for $\frac{3}{8}$ " pipe to accommodate a vent or riser, and the other for $\frac{1}{2}$ " pipe to take the cooling water thermometer. Note: Thermometers for individual cylinders are furnished only on special order. Thermometer—Screw the thermometers into the openings provided in each water overflow pipe. These thermometers indicate the temperature of the cooling water as it leaves each cylinder, and their location should not be changed. Note: Thermometers for inidvidual cylinders are furnished only on special order. Inexpensive high temperature alarm devices may be obtained and are recommended equipment. Venting for "Closed" Discharge Connections—On engines with the closed discharge connections, provision must be made for venting to the atmosphere any steam or air which may separate from the cooling water. $\frac{3}{6}$ " pipe tap openings are powided in each overflow pipe. Individual vent pipes may be installed in these openings, or the openings may be connected to a header pipe which is given a slight upward slope toward the outlet end and which may be connected to a high grade air trap located in the engine room, or to the overhead tank. See Fig. 13. for the suggested arrangement of vent piping. Pressure Relief Valve—On cooling systems using a displacement pump which discharges directly to the water jackets, a pressure relief valve must be installed near the pump discharge. This valve should be set to open at a pressure of 5 pounds per sq. in. higher than the working pressure in the system. Pump Shut-off Valves—All water pumps should be equipped with valves on both the suction and discharge sides to allow the removal of the pump without draining the system. Low Water Alarms—Low water alarms of a good commercial type should be installed in the overhead tank and hot well to warn the operator when the supply has reached the low level. Overflow Connections—All tanks, hot or cold wells, catch basins, etc., should be provided with overflow pipes connected to some other part of the system or to the sewer. Drains—The lower water manifold is provided with drain connections to which a drain pipe may be attached. Plugged openings are provided in the lower flange of each cylinder for completely draining the cylinders when there is danger of freezing or when the jackets are cleaned. On multi-cylinder engines, where frequent draining is necessary a drain header should be connected to these openings. All other low points in the system should be provided with proper drains. Connections and Fittings—Make all water connection joints tight, using white lead. Avoid unnecessary bends, and use gate valves throughout the system to minimize pipe friction. Cooling Water Pipe Sizes—Refer to Fig. 14. Anti-Freeze Solutions—Where there is a possibility of freezing, an anti-freeze solution may be used if desired. A reliable variety of anti-freeze material should be used and the strength of the solution must at all times be sufficient for adequate protection. #### COOLING SYSTEM General—After the cooling water has been circulated through the engine water jackets, the temperature is raised, and the water must be recooled. A closed cooling system is strongly recommended. In this system soft rain water or treated water is circulated continously through the engine water jackets and is recooled by means of a heat exchanger. Raw water, used as the cooling medium, can either be wasted or recooled. closed cooling system is always to be preferred as the soft cooling water is not exposed to the atmosphere, and evaporation losses are negligible. For this reason, a small water softener, installed as shown in Fig. 14, will take care of all make-up water requirements. A commercial heat exchanger of reliable make is connected into the system as indicated in Fig. 14. Heat exchangers should be installed in a vertical position wherever possible as the tube bundle can be more readily removed and replaced when cleaning, and less floor space is required. The raw and soft water compartments must be vented at the highest points to avoid air pocketing. To obtain the best results from the heat exchanger, it is recommended that the flow of raw water through the exchanger is in the opposite direction to the flow of soft water (as shown in Fig. 14). Fig. 15. Air Start Piping Diagram # 7. Air Start System Since the air starting mechanism is incorporated in the engine, installation work on the
air starting system will consist of installing the air compressor, starting air tanks, and the piping from the tanks to the engine. Air Compressor—The air compressor may be driven by a motor, an auxiliary engine, or by the engine for which it supplies the air. In the last arrangement, the drive pulley is fitted to the shaft extension. This last arrangement is not recommended unless a small independently driven auxiliary compressor is included; for, otherwise there would be no provision for supplying air for the initial start or in case of loss of air. Air Tanks—One 20" x 60" air tank is recommended for the 2 and 3 cylinder 12 x 15 engines and the 2 cylinder 14 x 17 engines; two 20" x 60" air tanks for the 3 and 4 cylinder 14 x 17 engines and three 20" x 60" air tanks for the 5 and 6 cylinder 14 x 17 engines. The air tanks should be placed between the compressor and engine inlet so that all dirt, water and oil will be collected in the tanks and can be drained off periodically. It is not recommended that the air line to the engine inlet be directly connected to the compressor discharge line between the compressor and air tanks. **Pipe Fittings**—Fittings used in the air line should be of the extra heavy pattern (250#). Air Line Valve—The air line valve should be a globe valve with lead composition disc, Jenkins Fig. 106A Spec. or equivalent make. Working pressure 250 lbs. gauge. May be ordered from Fairbanks, Morse & Co., Purchasing Dept., Chicago, on specification No. 21FM7F. Pressure Gage and Relief Valve—A $\frac{1}{2}$ " 250# relief valve and a $\frac{1}{4}$ " 600# pressure gage should be installed in separate connections on tanks and piped vertically to insure positive drains back into the tanks. Tee handle cocks ($\frac{1}{4}$ ") are installed in the pressure gage lines for inspection use. Air Pressure—The normal working pressure for the starting air is 225 pounds gauge pressure. In direct connected installations where the standing air must turn both the engine and the driven unit, the air should be maintained at this pressure to insure good starting. Arrangement of Equipment—Fig. 15 shows a typical arrangement of air starting equipment. Drains should be provided for all tanks, and at the low point in the main pipe line. Either drain plugs or valves may be used in the line, but valves must be used for the tanks. Avoid all unnecessary joints, and make each connection carefully, using thick shellac or a mixture of litharge and glycerine. Pipe Sizes—The following table gives pipe sizes for the air line depending upon the distance from the tanks to the engine | | | Air Pipe Sizes | | | | |------------------|--------------------|-------------------|----------|--|--| | Model
Numbers | Bore and
Stroke | Max. Length, Feet | Diamete | | | | 32 | 12x15" | { 25
50 | 2"
2" | | | | 32 | 14x17" | { 25
50 | 2" 21/2" | | | Pipe and Fittings—The following tabulation lists pipe and fittings with the exception of valves and pressure gauges, to cover an average installation. This equipment may be obtained through the Fairbanks, Morse & Co., Purchasing Dept., Chicago, or may be purchased locally. Pipe and Fittings Required to Connect Air Starting System on Models 32E12 and 32E14 Stationary Diesel Engines | | Quantity | | | | | |--------------------------------------|--------------------------------------|--------------------------------------|--|---|---| | 1
Tank | Tanks | 3
Tanks | Size | Material | Description | | 2
1
1
2
2
1
1
1 | 4
1
1
3
3
2
1
1 | 6
1
2
5
4
2
1
1 | 1½" x 2½"
2" x 1" x 1½"
2" x 2" x 1½"
2" x 2" x 1½"
2" x 10"
2"
2" x 34" x 2"
34"
2" x 1½" | *W.I.
C.I.
W.I.
**
C.I.
C.I.
C.I.
C.I. | Nipple Reducing Tee—Ex. Hvy Reducing Tee—Ex. Hvy Nipple Union Ell—Ex. Heavy Reducing Tee—Ex. Hvy Pipe Plug Pipe Bushing | | 1
2
1
1
1
1
2
1 | 1
2
1
1
1
1
2
1 | 1
2
1
1
1
1
2 | 1" x 3/4"
1½" x 5"
3/4" x 5"
3/4" x 5"
3/4" x 5"
3/4" x 5"
3/4" x 3/4" x 3/4" | *W.I. *W.I. *W.I. C.I. *W.I. *W.I. *W.I. | Pipe Bushing Nipple Union Nipple Ell—Ex. Heavy Pipe—Random Length Pipe—Random Length | *Standard wrought iron or steel pipe is satisfactory for 250 lbs. per sq. in. **Forged steel unions or equivalent wrought iron R.R. unions may be used. Forged steel unions may be obtained through Fairbanks, Morse & Co., Purchasing Dept., Chicago, on specification No. 20FM8J(Petro). # 8. Scavenging Air System Air Inlet Conduit—When the scavenging air is to be taken from outside the engine room, which is the recommended arrangement, make the conduit at the time the foundation is built. Specifications for this conduit will be found on the engine foundation plan. Provide a suitable covering and filter at the outer end to keep dirt from being drawn into the pipe, and extend the pipe above the ground level to keep the water out, as shown in Fig. 5. Optional Air Inlets—For installations where both extremely hot and cold temperatures are encountered, it may be advisable to provide an optional scavenging air inlet; that is, one from the outside and one from the engine room. This will make it possible to provide ventilation in warm weather and to conserve the heat in the engine room in the winter. Installation of Air Filter—When a filter is to be used, it may be located at any convenient point in the air suction line; that is, inside the engine room, on the roof, or outside the engine room wall in a suitable shed that will protect the filter from rain and snow. The connection between the filter and the air conduit must be kept air tight, especially on the engine side of the filter. Detailed instructions for mounting and operating these filters are furnished with each outfit by the filter manufacturer. # 9. Exhaust System For the description and operation of the various exhaust systems that may be applied to these engines, read the material under "Exhaust Systems," Section I. Recommendations for the various exhaust arrangements are given on the following pages. If any departure from these arrangements seems necessary, approval must be obtained from Fairbanks, Morse & Co. Also, any installation that varies from one of the recommended arrangements must be checked for Fig. 16. Individual Exhaust Pipe and Underground Conduit Arrangement (99YKA62) back pressure. This can be done as follows: With the engine operating at approximately full load, remove the exhaust conduit manhole cover or the exhaust pot hand hole plate and note whether there is any change in the exhaust temperature or fuel consumption. #### (a) General Installation Data Exhaust Piping—All exhaust piping should be installed in the shortest and most direct manner possible, avoiding sharp bends by the use of long sweep fittings. In order to protect the engine from undue strains, at least one expansion fitting or short length of flexible hose must be installed in the straight run of pipe adjacent to the engine and as close to the engine as practicable. It is recommended to use special fittings with cleanout flanges where the exhaust line is complicated and hard to dismantle. Multiple Unit Installations—Do not combine the exhaust discharge in multiple unit installations. Under no circumstances will an installation be approved where the exhaust pipes from two or more engines are combined before reaching the atmosphere. #### (b) Underground Conduit Arrangement. Approved Exhaust Conditions—The following tabulation shows the recommended diameters and maximum lengths of exhaust piping when using a plain exhaust pipe or when using an exhaust silencer in the exhaust line. | Model Number | 32E12 | 32I | E14 | |---|---------------------|---------------------|---------------------| | Number Cylinders | 1,2 & 3 | 1,2 & 3 | 4, 5 & 6 | | Plain Exhaust Stack; Conduit to Atmosphere: Diameter#Maximum length. | 18"
60'-0" | 18"
60'-0" | 20"
60'-0" | | Model Numbers | 32E12 | 321 | E14 | | Number Cylinders | 1, 2 & 3 | 1,2,3&4 | 5 & 6 | | Exhaust Stack; Conduit to Exhaust Silencer: *Diameter | 10"
6'-0"
12" | 12"
6'-0"
12" | 14"
6'-0"
12" | | Exhaust Pipe; Exhaust Silencer to Atmosphere: *Diameter §Maximum length. | 10"
12'-0" | 12"
12'-0" | 14"
12'-0" | #If a greater length is required, a ventilated stack must be installed. (Max. length—200 ft.) *Use nominal pipe size corresponding to Exhaust Washer or Silencer connections. §If a greater length is required, a ventilated stack must be installed having a minimum diameter of 14 in., and a maximum length of 200 ft. **Exhaust Diagram**—Fig. 24 shows a typical exhaust system with underground conduit. #### (c) Exhaust Manifold Arrangements. Air and Water Cooled Welded Manifold—Welded steel, air or water cooled manifolds are available for the 2 & 3 cyl. Model 32E12 and the 2 cyl. Model 32E14 engines. Refer to Fig. 17. The air and water cooled manifolds are essentially the same in appearance except that the water cooled manifolds include the water jacketing feature and have 2 water outlets on the top of each manifold and one water inlet connection at the bottom The exhaust outlet connection is normally at the top, however if desired, the whole manifold may be turned so that the outlet will be located at the bottom or 180° from the top location. An exhaust nozzle is used between the manifold and the cylinder. Stack Sizes with Welded Manifold: | | Plain
Stack | Mani-
fold to
Silencer | Silencer
to Atmo-
sphere |
--|----------------|--|--| | Model 32E12; 2 & 3 Cyl.; 10" Pipe Dia. *Length (no silencer used) length (with Burgess) Length (with Maxim) | 0' to 20' | $\begin{cases} 17'-0'' \\ 10'-0'' \\ 17'-0'' \\ 23'-0'' \end{cases}$ | 13' to 31'
6' to 33'
0' to 26'
0' to 6' | | Model 32E14; 2 Cyl.; 12" Pipe Dia. *Length (no silencer used) Length (with Burgess) Length (with Maxim) | 0' to 20' | 17'-0"
(10'-0"
(17'-0"
23'-0" | 12' to 30'
5' to 32'
0' to 25'
0' to 5' | ^{*}For greater length, use ventilated stack. Fig. 17 Water Cooled Welded Manifold Arrangement Cast Iron Water Cooled Exhaust Manifold-Cast iron water cooled exhaust manifolds are available for the 3, 4, 5 & 6 cyl. Model 32E14 engines. This equipment consists of barrel type, dry joint manifolds with inlet and outlet water piping connections to the water headers. There are two water outlets from each exhaust manifold section, one from each end, and one water inlet thus insuring good cooling water circulation. The water passing through the exhaust manifold does not circulate through the cylinders Exhaust outlet connections may be made from either end of the manifold. See Fig. 18 for arrangements. Fig. 18. C.I. Water Cooled Manifold Arrangement Exhaust Pipe Sizes-Water Cooled Exhaust Manifold 3, 4, 5 & 6 Cyl. Model 32E14 | Number of Cylinders | 3 | 4 | 5 | 6 | |--|-----------|---------------|-----------|----------| | †Plain Exhaust Stack;
Manifold to Atmosphere: | | | | | | Diameter | 14" | 14"
40'-0" | 16" | 18" | | **Maximum Length | 30'-0" | 40'-0" | 40'-0" | 40'-0" | | Exhaust Pipe; with Silencer: | | | | | | *Diam.—Manifold to Silencer | 14" | 14" | 16" | 18" | | **Maximum Length—Including Silencer | | | | | | and Tailpipe | 30'-0" | 40'-0" | 40'-0" | 40'-0" | | Exhaust Pipe; Silencer to
Atmosphere: | 00 0 | 10 -0 | 10 -0 | 10-0 | | Diameter | 12" | 12" | 14" | 14" | | Diameter
Length | 6' to 12' | 6' to 19' | 6' to 19' | 64 to 19 | *Requires reducer placed adjacent to the silencer. **Silencer may be located to suit conditions, but maximum length must not be exceeded. †One 90° elbow may be used with the pipe if necessary. If greater length is required use a ventilated stack. (d) Exhaust Pot Arrangement. Exhaust Pots—Fig. 19 shows the number of exhaust pots for each engine and the method of connecting them to the cylinders. Exhaust Diagram—Fig. 20 shows a typical exhaust system using an exhaust pot. Fig. 19. Arrangements Using Exhaust Pots Approved Exhaust Conditions—The following tabulation shows the recommended diameters and maximum lengths of exhaust piping for the various exhaust pot combinations. | Model Number | 32E12 | ♦32E14 | | | | |--|------------------|-------------------|------------------|--|--| | Number of Cylinders | 2 & 3 | 2, 3 & 4 | 5 & 6 | | | | Exhaust Pipe: Engine to Exhaust Pot: Diameter | 7″ | 8" | 8" | | | | Plain Exhaust Stack; Exhaust Pot to Atmosphere: #Diameter#Length | | 12"
12' to 15' | | | | | Exhaust Pipe; Exhaust Pot to Exhaust Silencer: §Diameter | 10"
6'-0" | 12"
6'-0" | △12″
6′-0″ | | | | Exhaust Pipe; Exhaust Silencer to Atmosphere: Diameter. **Length. | 10"
6' to 12' | 12"
6' to 12' | △12″
6′ to 12 | | | *Connections regularly furnished with Exhaust Pot equipment are as follows: Model 32E12, 2 and 3 cyl., 3-4½"; Model 32E14, 2, 3, 4, 5 and 6 cyl., 3-10" #This is the size and length of pipe listed for each Exhaust Pot equipment. If a greater length is required use a ventilated stack. \$A special 12" pipe B.C. flange, tapped 10", for attaching the exhaust pipe to the exhaust pot, is required for the Model 32E12 engines. This can be furnished by Fairbanks, Morse & Co. **If a greater length is required, a ventilated stack must be nstalled, having a maximum length of 200 ft. The ventilated installed, having a maximum length of 200 ft. stack is the preferred arrangement for all installations. OUse nominal pipe size corresponding to connections at the exhaust silencer. △A 12" silencer is used on 5 and 6 cylinder engines with exhaust pot arrangement. Service data—Exhaust pots are not offered for 4, 5 & 6 cylinder engines (8-41). #### (e) Dredge Exhaust Arrangement. Approved Exhaust Conditions—With the dredge exhaust, an exhaust nozzle, the same as used with the exhaust pot arrangement, is bolted to the cylinder exhaust connection; a long sweep elbow is bolted to the nozzle, and a tapped flange is bolted to the elbow. On the 12"x15" engines, a 8"x6'-0" pipe is screwed into the flange and on the 14"x17" engines an 8"x8'-0" pipe is used. Exhaust Diagram—Fig. 21 illustrates a typical dredge exhaust. #### (f) Pyrometer Equipment. Read Pyrometer Instructions—Before installing the pyrometer, read over carefully the instructions furnished by the manufacturer of the equipment. Pyrometer Conduits—For the switchboard type of pyrometer, it is desirable to run the extension leads from the thermocouples to the switchboard in a conduit. The Manufacturing Fig. 20. Exhaust Pot Arrangement (99YKA63) Division is prepared to furnish a special conduit which attaches to the exhaust side of the engine and has fittings for connecting Fig. 21. Dredge Exhaust (99YKA60) to each thermocouple. The conduit extends to the governor end of the engine and is equipped with extension leads that project from the end of the conduit. Additional extension leads and conduit are required to connect to the switchboard. #### #Ventilated Stack Sizes: | Ventilated Stack
should be (Dia.) | |--------------------------------------| | 14" | | 18" | | 20" | | 22" | | 28" | | 28" | | | #Not to exceed 200 ft. in length. # 10. Synchronizer The following instructions cover the installation of a synchronizer on an engine in the field. Note: All repair charts referred to are in "Section VI, Repair Charts and List". Installation—Set No. 1 piston on its upper dead center Remove the governor case 2341 (See Repair Chart No. 16) and the governor case dowels. Before touching the governor assembly, mark with a scratch awl or prick punch the position of the governor spider in relation to the crankshaft. This will make it possible to replace the governor spider exactly in its original position. Then remove the governor assembly, and slip the synchronizer governor case centering arbor on the crankshaft and up to the shoulder near the end of the crankshaft. The purpose of this arbor is to center the outer end of the synchronizer governor case while new dowels are being drilled and reamed in the lower base. Detach the synchronizer governor case 2341A (See Repair Chart No. 17) from the synchronizer and place it over the studs that originally held the governor case; then tighten all nuts securely. If the synchronizer governor case is correctly aligned, the centering arbor can now be turned easily; if the arbor cannot be turned easily, the governor case is binding from misalignment and should be adjusted until perfect alignment is obtained. This centering operation is very essential to the successful operation of the synchronizer and should be done accurately. When the synchronizer governor case has been centered correctly and while the stud nuts still are tight, drill new dowel holes in the synchronizer governor case and lower base with a ${}^2\mathcal{V}_{6}{}^{\mu}$ drill, ream $\mathcal{V}_{16}{}^{\mu}$ and drive in the dowels. The synchronizer governor case may now be removed to permit the assembling of the governor and synchronizer. Screw the long studs into the end of the crankshaft; drive the ½"x13%" dowel (2533) furnished with the synchronizer into the dowel hole in the governor spider; then replace the governor assembly on the crankshaft in its original position, as shown by the prick punch marks made prior to its removal. Now place the governor spider hub 1767 on the governor spider, centering it on the governor spider dowel 2533, and clamp in place with the three studs in the end of the crankshaft, being careful not to disturb the position of the governor spider on the crankshaft. Insert the spring posts 504A in the governor weights, and install the regulating springs 222. Next assemble the speed regulator yoke 2538 in position with the speed regulator adjusting screw 1769, nut 1770, ball bearing and spider hub bearing retainer 2544, and tighten the stud nuts securely. Bolt the synchronizer governor case in place. With No. 1 piston on its upper dead center, mark a "C" or other distinguishing mark on the governor spider hub dial 1767, under the governor case timing pointer 2344A. Take out the flat head machine screws on the speed regulator dial 2546, and remove the pinion 2549. Assemble the adjusting screw housing 1771A complete with the handwheel, on the syn- chronizer governor case; then tighten the cap screws. the handwheel 1602A n a clockwise direction until the regulating spring 222 has only a slight initial tension, then insert the indicator pinion with the hand 2547 pointing to zero on the dial 2546. Fasten the dial screws. After refilling the synchronizer case with oil and pouring a small quantity of oil on the pinion through opening for plug 2545, the engine will be ready to start. # 11. Checking Existing Installations Importance of Proper Alignment-The importance of knowing that the proper alignment of the crankshaft and extension shaft is being maintained cannot be over-estimated. If an improper alignment is not corrected, serious damage to the engine may result. In checking over an existing installation, read very carefully the points covered in "3. Installing the Engine and Drive Equipment," Section II. #### **OPERATING INSTRUCTIONS** III. Note:—All repair charts referred to are in
"Section VI, Repair Charts and List". General—The following instructions refer particularly to a first start, or to a start after a long shut-down. Subsequent starts will not require such detailed preparation. Fill the oil filter storage tank to the maximum level. Remove the crankcase covers. Spread the air seal rings from the crankcase webs, distribute lubricating oil over their bearing surfaces; then release the rings. Turn each crank down and with a hand oil can squirt oil into the crankpin oiler rings to insure lubrication to the crankpin bearings. Then replace the crankcase covers. Fill the governor case and main bearing oil wells to the level of the overflow pipe. # 1. Before Starting the Engine #### (a) Inspect the Engine. Make a final check of the complete installation. See that the engine is properly lined up and fastened securely to the foundation. Open the compression relief valves and bar the flywheel over several complete revolutions to make certain that all parts move freely. # (b) Fuel System. Clean Tanks and Piping-Before filling the fuel tank and other parts of the system, clean the tank and blow out or flush out the piping. Fuel—Use an approved fuel oil. For cold weather operation, use a fuel oil that will flow readily at the atmospheric temperature in which the engine is to operate. Fill Storage Tank and inspect for leaks. Fill Gravity Feed Fuel Regulator, if one is used, and inspect for leaks. Prime Fuel Supply System—Remove the cover (986D), on the fuel suction and overflow fitting and pour in strained fuel until the suction line and filter housing are full. Then replace the cover, and fill the fuel reservoir. (See Repair Chart No. 10). Prime Fuel Injection Pumps and Valves-With the fuel system filled and ready for priming, proceed as follows: Loosen the air vent plugs in the fuel injection valves and prime each injection pump, tube, and valve by moving the hand lever at the right side of the fuel reservoir back and forth from "Run" to "Prime" positions. Repeat until fuel free from air bubbles is forced out around the threads of the vent plugs. Then tighten the vent plugs. The normal injection pressure is such that the pump plungers cannot be operated manually to inject fuel through the valves. As the pump for each cylinder is primed, the engine must be turned so that the suction valve for that pump is closed. #### (c) Lubricating System. Study Diagram—Study the lubricating system shown in Fig. 11, and the description and operation of the system as explained in Section I. Lubricating Oil—Use a good grade of lubricating oil that has been recommended by a reputable oil company for use in a Diesel engine. The oil should check with Fairbanks, Morse specifications and should be free flowing for all temperature conditions in which the engine will operate. Filling the System-Remove the lubricator filler cap and pour in oil until the level remains constant. (Surplus oil over-flows to the clean oil sump). Disconnect the longest lubricator tube at its connection to the engine, and crank the lubricator until oil is discharged, then reconnect the tube. Crank the lubri-ca'or again for 30 or 40 turns so that all bearing surfaces supplied by the lubricator will have an ample sumply for starting. We take by the lubricator will have an ample supply for starting. W the oil level in the lubricator, and add more oil if necessary. Do not, under any circumstances, pour oil into the crankcases. Turn the flywheel several revolutions to distribute the oil. #### (d) Cooling Water System. Fill the cooling water system and inspect all joints for leaks, remedying them if any are discovered. #### (e) Air Starting System. Check the installation of the air starting system. Blow out all air lines before final connection is made at the engine to free them from dirt, scale, etc. Make the final connection of the air line, and charge the tanks to 250 lbs. per sq. in. Inspect the Fig. 22. Direction of Rotation (A-Standard B—Reverse) and Position of Piston and Flywheel Key for Starting lines for leaks and remedy them if any are found. Check the relief valves to make sure that they open at the proper pressure. When the engine has been shut down for a period longer than one month, remove the air start valves 570B (See Repair Chart No. 14), from the fuel reservoir, and the air start check valves (853B), (See Repair Chart No. 7), from the cylinder heads and clean the stems with fine emery cloth. Lubricate the stems when replacing the valves #### (f) Position of Flywheel, Controls, Valves, etc. Flywheel Position—Refer to Fig. 22. The standard direction of rotation is clockwise when looking at the engine from the governor end. See A in Fig. 22. With the relief valves in the cylinder heads open, turn the flywheel until the crank nearest the governor is about 10 degrees past the upper dead center. Determine the location of the crank in question by noting the location of the flywheel key. Relief Valves-Close the compression relief valves. Fuel System—Place the fuel control lever in "Run" position. Then open valves in the fuel line to place the system in operation. Cooling Water System—Start the cooling water pumps, and check the operation of the system. Be sure that all water jackets are full. Air Starting System—First place the air control lever in "Run" position, then open valves in the air line necessary to place the system in operation. # 2. Starting the Engine If the foregoing instructions have been carried out, the engine is now ready to start. Starting Multi-Cylinder Engines—Throw the air control lever quickly to the "Start" position. This allows the starting air supply to rush into the cylinders and rotate the crankshaft. Ignition should occur as soon as the engine attains a good rotative speed. Return the air control lever to the "Run" position as soon as ignition occurs. Failure to fire is sometimes due to insufficient priming. To correct this condition, repeat the priming operation as previously outlined in this section. Starting Single Cylinder Engines—Single cylinder engines will generally start more promptly, especially in cold weather or when heavy oil is used for fuel, if the starting air supply is shut off as soon as the engine attains a good rotative speed. Therefore, after applying the starting air as described in the preceding paragraph, bring the air control lever back to the "Run" position, and allow the engine to coast; i.e., to continue its rotation on the impulse of air just received. If ignition fails while the engine is coasting, repeat the operation above, always giving the cylinder a new impulse of air to keep the engine rotating. Starting in Low Temperatures—Any engine of the full Diesel type will start readily in moderate temperatures, but in extremely low temperatures, the following conditions may retard the start: (a) The rapid dissipation of the heat of compression through the cold cylinder walls, and the refrigerating effect of the cold high pressure starting air may lower the temperature to such an extent that the fuel will not ignite readily. (b) The high viscosity of the fuel oil may retard the injection and cause an ineffective fuel spray. (c) The high viscosity of the lubricating oil upon all rotating and reciprocating surfaces may cause the engine to turn so slowly that combustion is affected. When difficulty is experienced in starting, due to low temperatures, the following suggestions are offered to facilitate the start: (a) Pour about $\frac{1}{2}$ pint of lubricating oil into each cylinder through the head. This helps to seal the piston rings and increase compression. (b) Use starting cartridges as outlined below (c) If possible heat the engine room. (d) Heat the jacket water. (e) Use fuel oil with a low congealing point. In case it is impracticable to use fuel oil with a low congealing point, provide a fuel oil heater for regular operation, and run on light oil when starting and stopping. (f) Use lubricating oil that will flow freely for all temperature conditions in which the engine will operate or heat the lubricating oil Gasoline or other highly volatile fuels must never, under any circumstances, be used for starting. Using Starting Cartridges—If the engine does not start after several attempts, do not exhaust the supply of starting air. First make certain that fuel is being injected. Then remove one or two of the starting cartridge plugs in the cylinder heads on cylinders which do not receive starting air, insert and ignite the starting cartridges and replace the plugs. Then repeat the starting operation as outlined above. #### 3. After the Engine is Running Position of Controls, Valves, etc.—As soon as several ignitions have occurred, and the engine has come up to speed, bring the air control lever to "Run" position, and close the valve in the air supply line. It may be necessary to move the fuel control lever toward the "Stop" position until the excess fuel, which has been injected for starting, has been burned; then bring it back to the "Run" position. Check Fuel System—Determine if the fuel system is operating properly. Check the operation of the fuel supply pump by watching the fuel level in the reservoir gauge glass. The level should remain constant. Check Lubricating System—Lift the cover of each of the main bearing caps, and see that all of the main bearing oil rings are running properly. See that the clean oil pump is maintaining the oil in the lubricator to the overflow level, and that the lubricator is functioning properly. Check Cooling Water System—Determine if the cooling water system is operating properly. Adjust the controls so that the cooling water outlet temperature does not exceed 140°F. The maximum difference between the inlet and outlet temperatures must be restricted to 10°F., but it is recommended that a smaller difference be maintained. See "Cooling Water Circulation Rates" in Section II. Charge Air Tanks—Pump up the air pressure in the air tanks. On
installations where the air compressor is driven from the main engine, charge the tanks to the maximum pressure of 250 lbs. per sq. in. immediately after starting the engine. When the tanks are up to this pressure, close all the valves in the air line and at the tanks to prevent leakage. Before stopping the engine, see that the air tanks are up to the maximum pressure ready for the next start. # 4. Stopping the Engine **Position of Controls**—To stop the engine, bring the fuel control lever to the "Stop" position. **Crank Lubricator by Hand**—While the engine is slowing down, turn the lubricator crank 25 or 30 revolutions, so that the pistons and cylinder walls will be properly lubricated for the period of shut-down, as well as for the next start. Circulate Cooling Water—Continue to circulate the cooling water for ten to fifteen minutes in order to cool the hot cylinders and pistons gradually. **Drain Cooling Water in Freezing Temperatures**—When there is any likelihood of freezing temperatures, drain the water jackets, manifolds, and piping. Care of Engine when Not in Use—In case the engine is to remain idle for very long periods, it is advisable to lubricate the pistons and piston pins occasionally by hand cranking the lubricator, after which the flywheel should be turned several revolutions. Also, drain the entire fuel system of all fuel, and fill it with lubricating oil. # IV. INSPECTION ROUTINE Note—All repair charts referred to are in "Section VI. Repair Charts and Lists". **Cleanliness**—Keep the installation clean and in good order. It is our observation that when such is the case, little trouble is encountered with the machinery. Caution—Do not use gasoline for any cleaning purpose. **Inspection**—Inspect the engine and its equipment regularly. It is an excellent plan to have a regular inspection routine, and to assist owners and engineers in making up a suitable routine, the following suggestions are offered. # 1. Daily Routine - (a) Under "After the Engine is Running," Section III, will be found certain duties that should be performed after every start. - (b) Inspect fuel level in storage tank. - (c) Where a gravity feed fuel regulator is used, inspect for leakage through the vent. - (d) Inspect water levels in cooling system tanks, hot wells, etc. - (e) Inspect levels in the lubricating oil storage tank, lubricator and main bearing oil wells. - (f) Check the feeds of the lubricator. See heading "Force Feed Lubricator" in Section V. - (g) Watch the drains from the crankcases. These drains discharge into the lubricating oil sump at the governor end of the base, and may be inspected after removing the sump cover. Be sure that the drains are open. Under no circumstances should oil ever be allowed to accumulate in the crankcases. - (h) If an exhaust washer is used, blow out the drain pipes. - (j) Readings of all instruments such as gauges, thermometers, meters, etc., should be taken at regular intervals as determined by the owner or engineer. #### 2. Weekly Routine - (a) Remove drain plug in lubricator, and drain off any accumulated water. - (b) Drain air storage tanks and piping of water and oil accumulations. - (c) Clean the lubricating oil sump, strainers, etc., at the governor end of the engine. To drain the sump, remove the nipple (2316). (See Repair Chart No. 10.) - (d) Clean the lubricating oil filter. See instruction card furnished with filter. - (e) Check bearing temperatures by hand. Normal temperatures are such that the hand may be held on the bearing. - (f) Remove upper base hand hole covers immediately after engine is shut down. Check connecting rod bearing temperatures by hand. Inspect pistons, cylinders, etc. for proper lubrication. Inspect crankpin oiler lubricator tubes. Examine connecting rod bearing bolts and cotter keys. Try connecting rod bearings with crowbar for looseness or wear. Replace hand hole covers. - (g) Check water hardness. # 3. Monthly Routine - (a) Inspect and clean exhaust ports, exhaust nozzles, and points of thermocouples of accumulated carbon deposit. - (b) Clean air suction valves. - (c) Clean crankpits with kerosene. Reach well up into the scavenging air passages in the cylinders. - (d) Drain water and sludge from lubricating oil and fuel oil storage tanks, using the drains provided for this purpose. - (e) When the engine is in standby service, or is not in regular daily operation, remove all air starting valves (570B) (See Repair Chart No. 14) and air start check valves (853B) (See Repair Chart No. 7), and clean the stems with fine emery cloth. Lubricate the stems when replacing the valves. - (f) Check and adjust injection valves. # 4. Quarter Annual Routine - (a) Remove cylinder inspection plates, and examine for scale. If any deposit is found, consult a reliable manufacturer of water softening systems for suitable treatment. - (b) Inspect all valves in the fuel injection and fuel supply pumps. - (c) Drain the entire lubricating system, and thoroughly wash out with kerosene all parts in which sediment might collect. This applies to the main bearing oil wells, governor housing, oil storage tank, force feed lubricator, oil pumps and piping. - (d) Wash out fuel supply reservoir with kerosene. - (e) Clean the exhaust system including conduit and stack. - (f) Inspect the flywheel bolts for tightness. #### 5. Semi-Annual Routine - (a) Pull pistons for inspection and cleaning. Remove any rings that are stuck and clean the rings and grooves. Wash off with kerosene. Examine connecting rod bearings. - (b) Examine cylinder walls. When cleaning the cylinders and exhaust and intake ports, place a piece of cloth or canvas over the top of the cylinder, and then with a piston ring placed over the canvas, push both canvas and ring into the cylinder bore until they are well below the ports. This arrangement will provide a receptacle to catch all of the carbon, etc., which would otherwise fall into the crankcase. When the work is completed, the ring, canvas, and carbon may be withdrawn by pulling upward on the edges of the canvas. Clean the cylinder heads at this time, too. - (c) Inspect the inner surface of the exhaust port bridges and of the cylinder wall adjacent to the ports. There is a tendency for the east iron around the exhaust ports to grow due to the heat of the exhaust gases, and this surface must be kept even or slightly below the general bore of the cylinder. (See "6. Cylinder Exhaust Ports," Section V. - (d) Inspect and clean all water piping, circulating pumps, and cooling equipment. #### 6. Annual Routine - (a) When pistons are removed for inspection, disassemble and clean the piston pin bearings. See "5. Pistons," Section V. - (b) Check the crankshaft and engine for alignment; also, the driven apparatus. - (c) Clean the main fuel tank with boiling water and washing soda. # SERVICING INSTRUCTIONS Note: - All repair charts referred to are in "Section VI. Repair Charts and List. #### 1. Main Bearings Main Bearing Adjustment-Adjustment of the main bearings is necessary when there is excessive clearance between the crankshaft and the upper main bearing shells. To determine the actual bearing clearance and make the proper adjustment, proceed as follows: Remove the bearing cap and upper shell. Do not remove the shims. Place four pieces of pure lead wire over the exposed journal, one lengthwise and three crosswise. Replace the upper bearing shell and cap, and screw the nuts down to their original position. Then remove the cap and shell and with an outside micrometer, measure the thickness of the compressed wire. Then add or remove sufficient shims on each side of the bearing to give 0.004" to 0.007" clearance. After the adjustment is made, and the engine is in operation, note the bearing temperatures Main Bearing Removal-When the bearing cap, upper half of the bearing shell, shims, and the oil ring have been removed, the lower half of the bearing shell may be rolled out after first relieving it of the weight of the crankshaft by means of a small jack placed under the nearest crank web. Corrugations in the shell will assist in rolling it out. New Bearing Shells—New bearing shells, which will interchange with those on the engine, can be furnished from the factory. It will be necessary to fit the lower shell to its bed in the lower base, and to fit the upper shell to the bearing cap. The shells must be fitted to give a good bearing surface, and special care must be taken in fitting the lower shell so that it receives its share of the load from the crankshaft. Adjust clearance as outlined above. The lower shell is lined with "Bermax" babbit and, for successful operation it must be fitted to a 100% bearing throughout an arc of at least 120°. "Time Saver" should be used to produce a good bearing surface. "Time Saver" and instructions for its use may be obtained from Fairbanks, Morse & Co. or from Time Saver Products Co., 31 So. Desplaines St., Chicago, Ill. # 2. Connecting Rod Crankpin Bearings Connecting Rod Crankpin Bearing Adjustment—Adjustment of the connecting rod crankpin bearings is necessary when there is excessive clearance. To determine the clearance and make the adjustment, proceed as follows: With a bar placed under the connecting rod crankpin bearing, up on the bearing to see if there is excessive clearance. There should be no up and down movement of the bearing. Should the bearing have excessive clearance take out 1 or 2 shims on each side of the bearing until there is no up and down movement. After shims have been taken out, draw the bolts up until they are tight and then place the bar at the side of the bearing and see that it is free to move sidewise on the crankpin. If the bearing will not move sidewise on the crankpin, then shims must be added until the bearing is free to move sidewise. When proper adjustment has been made see that the nuts are tight and be sure to replace the cotter pins. Examine the cotters before replacing them and if any show signs of
cracking replace them with new annealed cotters. Connecting Rod Crankpin Bearing Removal-With each engine, there are furnished two piston clamps (2600) (See Repair Chart No. 19), for supporting the piston and connecting rod in the cylinder while the connecting rod crankpin bearing is being removed. When a connecting rod crankpin bearing is to be removed, fasten these clamps to the lower end of the cylinder wall with the cap screws provided allowing the end of the clamp to project up into the cylinder bore. Remove the connecting rod bolts, bearing cap and shims; then, as the engine is barred over, the piston will rest on the clamps, and the bearing box may be removed as the engine is turned to the proper position. This manner of supporting the connecting rod and piston makes it unnecessary to remove the cylinder head and connecting rod when renewing the connecting rod crankpin bearing. Be sure to remove the piston clamps as soon as the connecting rod crankpin bearing is reassembled, otherwise serious damage will result to the piston and cylinder. Connecting Rod Crankpin Bearing Renewal-The connecting rod crankpin bearing box and cap may be renewed if necessary. The bearing is lined with suitable babbit. For successful operation it must be fitted to a 100% bearing throughout an arc of at least 120° on both the upper and lower bearings. The machining clearance of the bearing is 0.004" to 0.006". When the bearing is well lubricated there should be no up and down movement although it should be free to move sidewise. The bearing bolts must be tight when checking. Note:—Late Model 14 x 17 engines use a precision aluminum insert for the box half of the crankpin bearings with the babbitt lining retained in the cap half of the bearing. The aluminum lining retained in the cap half of the bearing. The aluminum insert does not require fitting while the babbitt half of the bearing requires fitting as described in the preceding paragraph. Crankpin bearings with aluminum inserts have a running clearance of .003" to .005". Retaining the shims (44) (see Repair Chart No. 6) permits adapting the aluminum insert to journals that are as much as .0625" undersize. The out-of-roundness must not exceed .003". "Time Saver" should be used to produce a good bearing face. "Time Saver" and instructions for its use may be surface. obtained from Fairbanks, Morse & Co. or from Time Saver Products Co., 31 So. Desplaines St., Chicago, Ill. Always insert the cotter pins in the holes in the ends of the connecting rod bolts and spread the ends of the pins well apart. There are two holes in the bolts for the cotter pins, either of which may be used, thus allowing a closer adjustment. When a new connecting rod crankpin bearing has been fitted to an engine, inspect it at intervals after the engine has been started, and apply the load gradually. Wick Oiler-The crankpin bearing cap is fitted with a felt oil retainer which acts as an oil reservoir to furnish lubrication when the engine is first started. # 3. Air Stop Ring The air stop rings prevent the escape of air from the crank-cases through the bearings. They are machined very carefully with the base to secure tight joints. All of the rings are of the split type and may be removed without dismantling the engine. # 4. Crank Pin Oil Rings These rings collect lubricating oil from the force feed lubricator tube and deliver it to the connecting rod crank pin bearings. They are of the split type, and can be removed or replaced without dismantling the engine. #### 5. Pistons Removing Pistons—The pistons with connecting rods may be withdrawn after the cylinder heads and connecting rod bearings have been removed. Two ¾" tapped holes are provided in the top of the piston so that eyebolts may be used for lifting the Piston Rings-During the periodic inspection of the piston, the rings should be examined. All piston rings should work freely in their grooves, for if they are allowed to stick fast, gases will blow past them, and combustion will be poor due to low compression. If any rings are stuck, they should be removed and the rings and grooves cleaned. Before removing a ring, mark it so that it can be installed again in the same position. If the rings are gummed fast in the grooves, a hot solution composed of one pound of lye to three gallons of boiling water will assist in freeing them. Use this treatment only when the piston is removed from the cylinder. Wash off the solution after the parts are loosened. Clean all parts with kerosene or light lubricating oil, and lubricate them thoroughly before replacing in the engine. Oil Scrapers—The oil scrapers, which provide lubrication to the piston pin, fit into recesses in the piston wall at each end of the piston pin. Needle Roller Piston Pin Bearing-Refer to Fig. 23. The piston pin bearing is of the needle roller type with three rows of needles (or rollers) fitted into the space between the hardened steel bushing and piston pin. Four retainers are used to maintain the three rows of needles in position. Bushings, piston pins, needle rollers, and retainers may be renewed. The bushing fits tightly in the rod. When a bushing is to be replaced, heat the end of the rod to 160°-180° F. in hot oil or water and then put the cooled bushing in place. Servicing Needle Type Piston Pin Bearings—Each piston pin bearing should be disassembled once a year and cleaned thoroughly. The needles should be rinsed in kerosene, and all thoroughly. The needles should be rinsed in kerosene, and all oil holes in the piston pin should be cleaned out. Disassembling the Bearing—To disassemble the needle roller bearing the following procedure is recommended. After removing the piston and connecting rod from the engine, lay the piston on its side with the piston pin horizontal, or, if a hoist is available for lifting the rod, stand the piston upside down. Before the piston pin can be removed, the headless set screw, spring and dowel which hold the piston pin in the piston and the oil scrapers on each end of the piston pin, must be removed. (See Fig. 23). After this is done, place the piston pin sleeve in the piston against the small end of the piston pin as shown at "A". Push out the piston pin and follow it through with he piston pin sleeve, until the sleeve is in position in the connecting rod. Tighten the sleeve screws against the two end retainers and remove the connecting rod from the piston as shown at "E". To remove the needle rollers, loosen the sleeve screws, remove the retaining rings, push the sleeve out of the connecting rod and remove each row of rollers. Keep each row of rollers separate so that the rows can be replaced in their original position. Do not lose any of the rollers. Each bearing on the 12 x 15 engine has 231 rollers or 77 in each row, while each bearing on the 14 x 17 engine has 240 rollers or 80 in each row. An alternate method of removing the needle rollers is done as follows: Push the sleeve out of the connecting rod just far enough to tie a tape, or similar material around the row of needle rollers. Repeat the procedure for the other two rows. The needle rollers can be cleaned and inspected when taped on the piston pin sleeve. This method simplifies the reassembly procedure considerably. Replacement of Needle Bearings—After 10,000 hours of operation the needle rollers should be replaced with new ones. After 20,000 hours of operation, the piston pin bushing and the piston pin should be rotated 180° and the needle rollers should be replaced. As noted in Fig. 23 the dowel holes for the piston pin dowel are located 180° apart making it possible for the pin to be rotated 180°. The pin bushing is pressed out of the connecting rod eye. When replacing the bushing heat the eye of the rod in water or oil to 160°-180° F. and cool the bushing. The bushing will normally slide into place. After 40,000 hours of engine operation new piston pins and bushings must be supplied. Before removing the bushing and pin match mark them so they will be replaced correctly. Assembling the Bearing—Before assembling the needle roller bearings, be sure to rinse all the parts in kerosene and clean the oil holes in the piston pin. After cleaning, lay the rollers on a clean piece of paper. The first step in assembling is to mount one of the end retaining rings on the piston sleeve and tighten the sleeve screws against the ring. Next, slip one of the inner retaining rings on the sleeve up against the inside of the end retainer and insert the assembly in the connecting rod. The inner retaining ring tends to hold the sleeve Concentric with the pin bushing and permits the assembly of a full row of rollers as shown at "B" Fig. 23. If the rollers are inserted from the bottom up, the assembly will progress more easily. Check to make sure there are 77 bearings for each row on a 12 x 15 engine or 80 bearings for each row on the 14 x 17 engine, as it is possible to force one too many into a row which can cause excessive wear and consequent damage to the bearing. After a full row of bearings is assembled on the sleeve, put the other inner retaining ring on the sleeve, at the same time pushing the first row of bearings further into position. The inner retainer and the first row of bearings will be pushed into position when the second row of rollers is assembled on the sleeve. Insert the second row in the same way as the first row, as shown at "C" Fig. 23. When two full rows of rollers have been assembled on the sleeve with a retaining ring between rows, remove the end retaining ring from the sleeve and mount it on the opposite end. Doing this will put the two rows of rollers already assembled in their running position and permit the assembly of the third row of rollers on the opposite end. Assemble the remaining row on the sleeve as instructed for the first row. When the third row is put into place, the other inner retainer will also be pushed into position as shown at "D" Fig. 30. After the third row of
rollers is on the sleeve, mount the end retaining ring on the sleeve, pushing the rollers into position and then tighten the sleeve screws against the end retainer. Now the connecting rod is ready to be assembled in the piston as shown at "E" Fig. 23. Place the connecting rod in the piston, loosen the piston pin sleeve screws and push out the sleeve, following it through with the piston pin. Be sure that the connecting rod is not reversed in relation to the piston. After the piston pin is in position insert the dowel, spring and headless set screw which hold the pin in the piston. #### 6. Cylinder Exhaust Ports When the pistons are pulled for the semi-annual inspection and cleaning or at any other time that the pistons are removed, the exhaust ports should be thoroughly cleaned and the cylinder walls carefully examined. Occasionally, when an engine is operating under a very heavy load or possibly under an unfavorable exhaust condition, the bridges around the exhaust ports may have a tendency to grow and to extend into the cylinder. This condition should be checked with a straight edge when the cylinder is open and the extending metal, if any, removed by rubbing down or carefully grinding. It is unnecessary to relieve the surface beyond the surface of the cylinder. Remove sharp edges around the exhaust ports—a ½6" radius is recommended. # 7. Piston-Cylinder Head Clearance Adjusting Clearance—The piston-cylinder head clearance may be adjusted by adding or removing shims at the joint between the foot of the connecting rod and the connecting rod bearing box. The connecting rod bolts must be removed to make the adjustment. Checking Cylinder Head Clearance-1st Method-The preferred method of checking the clearance is to turn the crank to top dead center, loosen the connecting rod bolts and pry the rod up until the piston hits the cylinder head. Measure the amount of movement, which indicates the clearance. movement should be .125" to .188". Checking Cylinder Head Clearance-2nd Method-A close check on the piston cylinder head clearance may be made as follows: With a cold engine, remove the injection valve on the cylinder to be checked. Bar the flywheel over until the piston is near top dead center, and insert two pieces of lead wire through the opening in the cylinder head in such a manner that they will come between the head and the sloping portion at the top of the piston. Then bar the flywheel so that the piston passes over top dead center, remove the wires and measure their thickness, which will be the actual piston cylinder head clearance. The clearance at the closest point should be .0625" to .094". Repeat the process on the other cylinders. Compression Pressures—The compression pressure should be taken while the engine is at operating temperature, and should be from 450 to 500 lbs. per sq. in. The variation between cylinders should not exceed 15 lbs. per sq. in. The firing pressures should not exceed 725 lbs. per sq. in. The variation between cylinders should not exceed 70 lbs. per sq. in. Check the pressures by means of an indicator. The indicator cocks should be installed in the holes provided in the cylinder heads. It is not necessary to connect up an indicator drive to obtain the pressure; pulling the indicator by hand will give the desired results. #### 8. Air Start Mechanism Air Start Valves—The air start valves (570B) (See Repair Chart No. 14), located in the fuel supply reservoir casting just behind the fuel injection pumps should be inspected occasionally and reseated, if necessary. The plugs (903) must be removed before the valves can be taken out. The valves may be reseated in the usual manner. Be sure to replace the parts in their original position. Air Starting Shut-Off Valve-The air starting shut-off valve (2294B) (See Repair Chart No. 14), is of the disc type and is held in position against the valve cage (2293E) by means of a In the event of leakage between the valve and cage, reseat the valve to its seat on the cage by lapping or grinding. Air Starting Check Valves-The air starting check valves in the cylinder heads should be removed and cleaned occasionally. If necessary regrind the valves to their seats. #### 9. Fuel Injection Pump Reseating Injection Pump Valves-The injection pump valves must be reseated at intervals, for leaking valves will result in dark, smoky exhaust and irregular engine performance. Refer to Repair Chart No. 11B, when removing the valves for reseating. In grinding the valves, use a fine carborundum paste, flour of glass, or pumice stone mixed with oil. Never use emery compounds as even the finest grades are too coarse. After grinding, make sure that all traces of the grinding compound are removed from the valve and seat. Suction valves are provided with screw driver slots for rotating them while grinding. charge valves are cup shaped. A small stick shaped to fit into the valve may be used to rotate the valve. #### 10. Differential Fuel Injection Valve For servicing information on the differential fuel injection valves, see Instructions No. 2769, latest edition. The injection valve should be checked in about 200 hours after the first start and at monthly intervals thereafter. Whenever an injection valve is being installed in the cylinder head it must be clamped down very tightly and evenly as otherwise the extreme pressure of injection may disturb the location of the parts and cause unsatisfactory operation. # 11. Injection Timing The fuel injection is timed properly at the factory for best running conditions, and the parts are marked so that they may be reset to their original position. The cylinders are numbered 1, 2, 3, etc., with No. 1 cylinder at the governor end. Method of Timing—The method of timing the injection is to clamp the governor spider (501B) (See Repair Chart No. 16), in such a position that the injection pump plunger of No. 1 injection pump is at high point a certain number of degrees before No. 1 piston reaches top dead center. With the timing correct for No. 1 cylinder, timing for the other cylinders will be correct automatically. Injection Timing Marking-With No. 1 piston on top dead center, the mark on the governor spider designated by the letter "C" should register with the governor case timing pointer. (See Fig. 24.) This is the factory setting. Injection Timing-Injection timing is properly set at the the factory for best performance with an average fuel. For heavier or lighter fuels it may be necessary to adjust the setting. This can be determined from the full load firing pressures. Fig. 24. Adjusting Injection Setting Dead Center Setting-With No. 1 piston on top dead center, No. 1 pump plunger will be at high point when the prick punch mark on the governor spider registers with the fiming pointer. # 12. Balancing Load on Cylinders Uniform exhaust temperatures indicate that approximately the same amount of fuel is being injected to all cylinders; therefore, if the temperatures are not uniform, more fuel should be injected to cylinders with low temperatures, and less to those with high temperatures. Methods of Taking Exhaust Temperatures-The most satisfactory method of taking exhaust temperatures is with the use of a pyrometer which is furnished when ordered specially. In the absence of pyrometer equipment, an exhaust thermometer may be used. Exhaust Temperatures—Since the exhaust temperatures will vary with the installation, the readings taken by the factory representative when the engine was first started should be obtained. Subsequent readings taken under similar conditions should conform within reasonable limits. Before making any adjustment, be sure that all thermocouples are clean, and that the injection system is operating properly. Under normal full load operating conditions, with the engine in good condition and with an approved exhaust arrangement the exhaust temperature should not exceed 420°F. The difference between the individual cylinders on an engine should not exceed 30°F. for full load or 60°F. for fractional loads to maintain the cylinders in balance. Fuel Injected Determined by Suction Valve Closing-The amount of fuel injected depends upon the closing of the suction valve (P) (See Fig. 1), the earlier the valve is closed, the more fuel is injected, and the later the valve is closed, the less fuel is injected. Suction Valve Closing Affected by Valve Clearance-The time of closing of the suction valve is affected by the amount of clearance between the upper push rod stem (R) and the suction valve (P) measured with the cam in low position. With a small clearance, the suction valve will be lifted farther off its seat, and will close later. With a large clearance, the opposite is true. Thus, if less fuel is to be injected into the cylinder, the clearance must be decreased, and if more, the clearance must be increased. Suction Valve Clearance—The clearance between the suction valve and push rod should be from .015" to .050" on 12"x15" engines, and from .015" to .060" on 14"x17" engines with the governor cam in low position. To measure the clearance, remove the pump case housing cover (849A), the fuel reservoir cover (986A), and the injection pump discharge valve (91), spring (537), and suction valve spring (259). With the governor cam in low position, hold the suction valve down on its seat, and lift the upper push rod stem (642A) against the valve. Then insert the thickness gauge (feelers) between the push rod stem (642A) and the adjusting screw (626A). (See repair chart No. 11B.) Sealed Push Rods-The suction valve clearance is adjusted correctly at the factory, and the adjusting screw on No. 1 pump is sealed. On single cylinder engines, no further adjustment should be made, but on multi-cylinder engines, occasional adjustment is required to keep the load balanced on all cylinders. Adjustment should always be made on the unsealed push rods. By following this procedure, No. 1 cylinder is used as the key cylinder, and all other
cylinders must be adjusted to it. Making the Adjustment-The adjustment is made by either lengthening or shortening the push rod. Lengthening the push rod results in decreased clearance, the suction valve closes later, and the amount of fuel injected is decreased. To make the adjustment, loosen the adjusting screw nut (O), and then while holding the push rod (Q) with a stiff wire or nail inserted through the hole in the push rod, turn the adjusting screw in the desired direction. (See Figs. 1 and 25.) Be sure to tighten the lock nut after the adjustment has been made. Start the engine and observe the exhaust temperature under full load. If one of the cylinders has more load than the others, its temperature will be higher. To balance the load, make further adjustments, until the pyrometer indicates exhaust temperatures all within a limit of 30°F. at full load. Fig. 25. Adjusting Push Rods ### 13. Fuel Supply Pump Suction and Discharge Valves-The fuel supply pump should be inspected occasionally, and the suction and discharge valves (519A) reseated, if necessary. (See Repair Chart No. 10.) To withdraw the valves, remove the fuel reservoir cover plug (2112), and cap (520A). Strainers—The fuel suction strainers may be cleaned after removing the cover (986D) to which they are attached. Refer to the separate instructions furnished by the manufacturer of the strainers. #### 14. Gravity Feed Fuel Regulator If fuel leaks from the vent in the reservoir cover, shut off the fuel supply to the regulator, drain and clean the reservoir by with gasoline or kerosene. It may be necessary to regrind the valve. There are also provided two drains—the lower drain for the water jacket and the upper for the fuel regulator reservoir. Drain the fuel regulator reservoir frequently to remove any accumulated water or sediment which might interfere with the peration of the engine. #### 15. Force Feed Lubricator The lubricator should be adjusted to give the following number of drops per minute: 12" x 15" Engines Cylinder feeds—16 drops 360 r.p.m. Crankpin feeds—24 drops 14" x 17" (Cylinder feeds—14 drops Crankpin feeds—21 drops—(Babbitt bearings) Engines 300 r.p.m. Crankpin feeds—42 drops—(Aluminum bearings) During the run in period of engines with aluminum inserts in the box half of the connecting rod bearings, the lubricator for the bearings should be set at 56 drops per minute and gradually reduced to the minimum of 42 drops per minute. The values given above are for average operating conditions and may require some adjustment to meet local operating conditions and quality of oil. Checking Lubricator Feeds-To check the lubricator feeds, first count the number of impulses per minute made by the lubricator with the engine running at normal speed. Then divide the number of drops per minute (from the table), by the number of impulses per minute which will give the drops per impulse at which the lubricator should be set. With engine stopped, and while hand cranking lubricator, count the drops per impulse. If necessary, make the adjustment as outlined in the lubricator instruction book. Cleaning Lubricator—See lubricator instruction book for method of cleaning. #### 16. Air Filter Servicing Filter—Non-self cleaning type filters, when dirty, should be removed and cleaned by immersing in light oil or kerosene until all the dirt and grit has been washed free. After draining for several minutes, the filter should be dipped in a special air filter oil as recommended by the filter manufacturer. If the engine is operated continuously, it is advisable to have a spare filter which can be used while the other unit is being Self-cleaning oil bath type filters should be drained and cleaned periodically, depending on operating conditions, and refilled with a light oil. The pressure drop in the lower base should not exceed 3" of water between filter cleanings. #### 17. Exhaust Equipment Necessity for Cleaning-Although the engine may be operating with a good exhaust condition under full load or less, flakes of carbon, tar, etc., will collect in the exhaust line unless the exhaust is continually washed. If the formation is allowed to collect, it must be removed periodically. The frequency of cleaning depends upon many factors, but may be readily determined for each installation. #### 18. Crankshaft End Play The end play of the crankshaft is adjusted by thin shims placed between the air stop ring and a shoulder on the crankshaft. The shims are made in halves for easy installation or removal, and are located to make all adjustments at one crank or bearing, the other cranks or bearings having slightly greater end-wise clearance. The shims may be ordered by Repair No. 577A for thick shims (used only for 14"x17" engines), and Repair No. 578A for thin shims. Adjustment—If the end play becomes excessive, it may be reduced by adding shims, always adding two halves at a time. On engines of more than one cylinder, an equal thickness should be added to both points of adjustment, if possible. In making this adjustment, always allow .025" to .035" end play, and take especial care that all the other stop rings have greater clearance than the two taking the end thrust. # 19. Changing Rotation Changing the rotation of the engine must be done by a competent mechanic, and to such a man it will be self-evident how to take the governor apart and reassemble it to the opposite hand. It is necessary to obtain from the factory a new governor spider with injection and governor cams, and also a new air starter cam. Reassemble the governor with the weights as shown in Fig. 26. Note: Drawings will be furnished upon request, showing how to remachine the old parts in the field to obtain reverse Fig. 26. Reverse Rotation Governor Diagram # 20. Changing Speed Fig. 27. Changing Speed To increase the engine speed, tighten the governor springs by means of the adjusting screws W; to decrease the speed, reverse the operation. See Figs. 26 and 27. Adjust the two springs so that they have equal tension. 21. Woodward Governor For instructions on adjusting Woodward governors see the Woodward Governor Co. Bulletin W-2 covering Type IC governors. # 22. INSTRUCTIONS FOR ASSEMBLING MODEL 32 ENGINES DISMANTLED FOR SHIPMENT **Export Shipments**—Three different methods of boxing are used for shipping Model 32 engines on export orders. They are shipped 1. Partially dismantled 2. Totally dismantled 3. Completely assembled This section deals with a totally dismantled engine. If it is only partially dismantled the erector may finish assembling it, using only the instructions which cover the work yet to be done. The engine must be handled and assembled carefully in order that it may be kept clean and so that all parts will work freely. Study the repair charts while assembling the engine. Setting Lower Base—When the foundation is ready the lower base may be set in place and assembly work started. Level the lower base carefully and block it firmly so it will not be disturbed by the work which will be done on it. See heading "Installing the Engine and Drive Equipment" in Section II. Laying Crankshaft—Clean the crankshaft thoroughly, removing all of the rust preventing grease. Lay the crankshaft in place and make sure that it rests properly in all of the lower main bearing shells. Put on the upper halves of the main bearing shells, adjusting them according to Section V. Be sure to put the bearing shells on in their proper position and replace the dowels and shims as they come from the factory. Check the crankshaft end play. See heading "Crankshaft End Play" in Section V. Do not install the flywheel until after the bearings are tightened down ready to run. Upper Bases—Install the upper bases, being sure to put each one in its proper place and with the right side to the front. The lower and upper bases on the multi-cylinder engines are plainly marked on the front side. The dowels for locating the upper base are shipped in place in the lower base. The gaskets are in a metal container. Cylinders—Place the cylinders on the upper bases. Line them up so that the drilled spots at the joints line up exactly. There are no dowels between the cylinder and the upper base so the spots must be matched. The gaskets are in a metal container. Pistons and Connecting Rods—The connecting rods and both halves of the connecting rod bearings are stamped with the cylinder number. The marks should all be toward the front of the engine. The shims between the upper and lower halves of the connecting rod bearing must be assembled in the same relation as they are when they leave the factory. The shims between the connecting rod bearing and the bottom of the connecting rod are fastened to the upper stud for the hand hole cover on the front of each upper base. See headings 2, 5 and 7 in Section V. Piston-Cylinder Head Clearance—Be sure the cylinder heads are assembled properly. Each head is stamped on the front side with the cylinder number. To check the cylinder head clearance first turn the engine over by hand to see that all parts are free and then proceed as indicated in heading 7 in Section V. Governor—The governor is left on the crankshaft except in the case of the Woodward governor. For installing the Woodward governor see Instructions 2818. In this case it is not necessary to consider the section covering the removal of the standard governor. Injection Pump—The injection pump housing is removed with all parts in place and the crankshaft is removed without disturbing the governor and then the injection pump housing is put back where it belongs. In the 4, 5 and 6 cylinder engines it is necessary to remove the rocker shafts for the lower rockers in order to lift the pump up past the cams. See repair chart 11B. These rocker shafts are put back in place for shipment and must be again removed in order to get the rockers down over the cams when the pump is replaced after laying the crankshaft. Then the rockers are reassembled for operation. To
remove the rocker shaft, first remove the small lock plate at the outside end. Then push the shaft back a short distance and remove the split washer from the groove at the inside end. The shaft will slip out leaving the rockers free except for the small springs which hold them against the cam. To replace the rocker shafts reverse the procedure outlined above. Manifolds and Piping—The installation of the water manifolding and the starting air and lubricator piping and the injection tubing is quite simple. The pipes are the right length and have the proper fittings attached to them. The air start piping and water manifolds are shown in Repair Charts 13 and 18. The injection tubes and some of the lubricator tubes run under the floor of the platform. General—Too much care cannot be taken during the assembly of the engine to be sure that everything is clean and works easily and is free from leaks. When the assembly work is finished the engine may be installed in the normal manner. See the complete section on Installation (Section II). #### Installation of Air Seal Rings on Crankshafts with and without Counterweights Turn engine with crank pin on top dead center for respective cylinder in which air seal rings are to be installed. Obtain a piece of sheet metal about .020" to .030" in thickness and approximately 10" square. Cut a half circle equivalent to radius of main bearing journal from one edge or use two strips of sufficient width to accomplish the same purpose. Place the above shim adjacent to the web of the crankshaft with the arc resting on the shaft. In a case of an engine fitted with counterweights, obviously that half of the air seal ring which operates adjacent to the counterweight should be installed first. The two holes in this ring half which receives the springs should be nearly filled with cup grease which will aid in holding the springs in place during assembly. Put the springs in place and place the ring on the shaft using the sheet metal shim to prevent the outer end of the spring from fouling on the shaft, the shim may be removed. Before starting the next operation fabricate two hooks similar to fish hooks (these can be made from heavy wire or 20 penny nails) and also attach a 30" length of wire to the eye of each hook. The next step is to move the ring half around the shaft to the bottom side. During this operation the bore of the ring half must be held against the shaft. Invert the hooks and insert them in the threaded holes in the ring half. The wire attached to the hook on the operating side should be passed under the shaft to the assistant on the opposite side. Also, the assistant on the exhaust side should pass the wire under the shaft to the man on the operating side. The ring can now be pulled into position on the bottom of the shaft by pulling on either side of the wires with sufficient resistance on the other wire to hold the bore of the ring snug on the shaft. The ring should now be in position at the bottom of the shaft following which the wire should be brought out through the crankcase opening and secured to the handhole cover stud on the upper base. Install the other half of the ring by again using the shim mentioned above for guiding the springs in place. Insert the two capscrews for holding the two halves together After the capscrews have been pulled down snugly to bring the ring halves together, the two taper dowels should be driven in the air seal ring, the capscrews then tightened firmly and secured in place with lockwire. # VI. REPAIR CHARTS AND LISTS Complete Assembly.—The complete assembly number shown in large bold face type and followed by the letter "C" (indicating complete) includes all items to the next horizontal line. A complete assembly may be ordered "less" any items unless the words "Not furnished separately" appear against those items. Bracketed Assembly.—The bracketed assembly number shown in small bold face type includes all of the items in the bracket. The main part of the assembly (in small bold face type) cannot be furnished except with all the parts in the bracket. Individual Repair Parts.—Individual repair parts and unnumbered parts are furnished separately unless followed by the words "Not furnished separately." This instruction book effective on the first back flow scavenging engines | Model 32E | 19 (19,15) | 7 | Andal 201 | 14 (14-1 | 7) | | | | |--------------------|------------|---------------------|------------|-----------|-----------|--|--|--| | Model 92E | | Model 32E14 (14x17) | | | | | | | | 1 Cyl. | 783165 | 1 Cyl. | 780565 | 4 Cyl. | 781307 | | | | | 2 Cyl. | 781314 | 2 Cyl. | 780551 | 5 Cyl. | 780205 | | | | | 3 Cyl. | 780568 | 3 Cyl. | 781324 | 6 Cyl. | 780558 | | | | | and all thereafter | | and all | thereafte: | r includi | ng 4 cyl. | | | | | | | | 778 | 056 | | | | | # Instructions for Ordering Repair Parts Information Required.—To insure shipment of the proper repair parts, without delay, give the complete description of the part, or parts wanted as shown in the following example. - 1. Quantity of parts wanted, "one." 2. Repair number, "1F." 3. Name of part, "cylinder." 4. Engine Model 32E14. - 5. Number of cylinders and model, "4 cylinder Model 32E14 Diesel." - Engine serial number, "No. 876972." Specify AR1, AR2, AR3 or AR4 where found in list as with 422J on page 31. See Fig. 37 on page 29 to determine engine arrangement. Sample Repair Order.—The repair order in this case should read: One "1F" cylinder for 14"x17" 4 cylinder Model 32E14 Diesel Engine serial number 876972. Repair Number and Engine Serial Number.—The most important items of the above information are the Repair Number and the Engine Serial Number. The latter is stamped on the upper face of the lower base on the exhaust side of the engine at the governor end. The cylinders are numbered 1, 2, 3, etc., beginning at the governor end. # Index of List Divisions | 1110 | ex of List Divisions | | |------|--|--| | | Page | | | 1. | General Engine Parts and Platform30 | | | 2. | Upper and Lower Base | | | 3. | Crankshaft Flywheel and Bearing Shells | | | 4. | Outboard Bearing and Pulleys | | | 5. | Cylinder | | | 6. | Piston and Connecting Rod | | | 7. | Cylinder Head and Valves | | | | | | | 8. | Exhaust Pot and Pipes | | | 9. | Governor Rocker and Push Rods | | | 10. | Fuel Reservoir, Oil Pump and Oil Sump | | | 11. | Injection Pump Rockers and Housing51 | | | 12. | Lubricator and Air Valve55 | | | 13. | Air Start Piping57 | | | 14. | Air Start Rocker and Push Rods58 | | | 15. | Woodward Governor Parts, Furnished by F. M. & Co59 | | | 16. | Standard Governor Parts | | | 17. | Synchronizer or Speed Regulator62 | | | 18. | Water Manifold and Parts (See List Div. 8 also)63 | | | 19. | Tools and Wrenches | | | 20. | Oil Storage Filter Tank | | | 21. | Dredge Parts65 | | | 22. | Springs, Gaskets and Packing | | | 44. | opinigs, Gashous and Lacking | | # Index of Repair Numbers | Repair
Number | Page
No. | Repair
Number | Page
No. | Repair
Number | Page
No. | Repair
Number | Page
No | Repair
Number | Page
No. | Repair
Number | Page
No. | Repair
Number | Page
No. | Repair
Number | Page
No. | |--------------------------------|----------------------------------|---|----------------------------------|---|----------------------------------|-------------------------------------|----------------------------|--|----------------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------------|--|-------------------------------------| | 1F
2F
2H
2L
3L | 41
32
32
32
32
44 | 55
56
58
58A
59 | 51
51
51
51
51 | 195
197B
197D
198B
199A | 31
33
33
41
32 | 314B
315A
317A
319A
323 | 40
40
40
40
59 | 451
452
454
464B
469A | 55
55
55
51
54 | 570B
572
573B
573D
574 | 51
51
57
57
59 | 654U
656A
656B
656D
656E | 53
48
48
48
48 | 816G
817E
817F
817G
818E
818F | 38
38
38
38
38
38, 3 | | 4
5G | 42
42
42 | 60A
66
70A | 50
64
61 | 200 | | 342
342A | 34
34 | 470
472A
473A | 49
54
53 | 577A
578A | 39
39 | 656F
657D
658A | 54
48 | 818G
819E
819F | 38, 3
38, 3
38, 3 | | 6
7D
8B | 42
42 | 75A | 47 | 205A
205B | 32
32 | 346
346A
349 | 59
59
42 | 501B
501F
501G | 61
59
59 | 591A
592A
593A | 56
56
56 | 658B
658D | 37
59 | 819G | 38, 3 | | 8H
8K
13J | 42
42
35 | 76
76A
77A
83A | 46
46
47
61 | 210A
210B
214
215A | 31
31
32
55 | 355B
362E
363B
364B | 34
41
44
44 | 502D
502E
503A | 61
59
61 | 595
595A
597A
597B | 62
56
56
56 | 659E
659F
659G
659H | 53
53
53
53 | 820A
820B
821E
821F | 38, 3
38, 3
38, 3 | | 13K
13L
13M | 35
35
37 | 85A
90B | 61
49
52 | 215B
216A
217D | 55
55
55 | 387
392 | 52
37 | 504
504A
505 | 61
62
61 | 598A
598B
599A | 56
56
56 | 659J
665
666 | 53
47
46 | 821G
822E
822F | 38, 3
38, 3
38, 3 | | 13N
14GH
17D | 37
33
43 | 91
92A
92B
96A | 31
31
31 | 222
222A | 62
62 | 393
394 | 37
37 | 505A
507E
510A | 59
61
54 | 599B
600 | 56 | 668
669A
670 | 46
63
47 | 822G
823G
823H
823J | 38, 8
38, 3
38, 3 | | 18 F
18E | 43
43 | 138 | 37 | 225A
225D
225E | 46
46
43 | 400 | | 510B
511B-B | 65
54 | | | 671
674A | 47
59 |
823K
823L | 38, 3 | | 20D
20E
21B
21D | 43
43
43
43 | 139
139A
148
150 | 37
37
49
49 | 227
229
233B | 41
43
56 | 400
402
402A | 64
35 | 511E
512A
513 | 65
54
59 | 604A
608A
611
615 | 32
34
47
46 | 674B
674D | 59
59 | 823M
825
825A | 38, 3
34
40 | | 25
25B
25D | 66
36
37
37 | 164A
164B
165F | 37
37
37 | 240
248B
251
253A | 59
44
61
37 | 403A
404
405 | 36
36
41
37 | 516D
517E
518A
519A | 49
49
49
49 | 616
617
618 | 46
46
46 | 701
721E
755
798A | 57
64
52
63 | 827G
827H
827J
827K | 38
38
38 | | 26A
26B
26D | 37
37
37 | 165H
165J
167A | 37
65
61 | 253D
254A
256D | 38
33
61 | 407B
407D
409B
416 | 63
63
32
46 | 520A
520B
524A | 49
66
51 | 625A
625B
625D
625E | 48
48
48
48 | 800 | | 827L
827L
827M | 38
38
38 | | 32B
32D
33C
34A
39 | 43
43
44
43
51 | 172
172A
178
181
181A
182B | 41
41
42
43
43
32 | 259
260B
263
266
271
277 | 52
52
45
54
55
63 | 419A
419B
420
421 | 39
39
32
31 | 525A
526A
528A
529A
531B
535B | 51
51
51
51
52
52 | 625F
625G
626A
626B
627A | 48
48
54
54
54 | 805D
805E
806D
806E
807D | 34
34
34
34
34 | 830
831F
831G
831H
831J
831L | 34
39
39
39
39
39 | | 44D
44E | 43
43 | 187A | 50 | 281
281A
282 | 46
46
45 | 422
423 | 31
31 | 536A
537 | 52
52 | 627B
632A | 54
44 | 807E
812D | 34 | 831M
833 | 39 39, 4 | | 44G
44H
44J
48A | 43
43
43
61 | 189
189A | 42
64 | 298
300A | 34
49 | 424
425
426 | 31
31
31 | 544
546E
552B
553D | 52
61
53
53 | 642A
651B
654Q
654R | 54
54
53
53 | 812E
813B
813D
814B | 33
33
33
33 | 836
837
838
839 | 42
42
42
42
42 | | 51B
52B | 61
61 | 191
192
193B | 37
37
37 | 310A
311B
314A | 40
40
40 | 427
432 | 31
55 | 566A
566B | 61
59 | 654S
654T | 53
53 | 816E
816F | 38
38 | 840 | 42 | # Index of Repair Numbers (Continued) | Repair
Number | Page
No. Pag
No. | |---|----------------------|--------------------------|----------------------|---------------------------------|------------------|-------------------------|----------------------------|---|----------------|------------------------------|----------------|-------------------------|------------------|--|--| | 849A
849B
849D | 54
59
59
41 | 1086B
1088 | 50
50 | 1405
1406
1407 | 43
43
43 | 1902A
1902D
1941B | 51
66
54 | 2319A
2320
2321 | 50
34
54 | 2443
2401 | 49
59 | 2848
2850
2976 | 59
62
48 | 4971
4977
4981 | 59
59
59
60 | | 850
853B
854B
856 A | 41
44
44
44 | 1088A
1089A
1090 | 50
50
35
55 | 1423B
1499 | 66
6 3 | 1977A
1978
1988B | 34
39 | 2321B
2322
2323 | 66
54
63 | 2500 |) | 2976A
3056 | 59
50 | 4982
4985
4987
4989 | 60
60
60 | | 856A
858D | 44 | 1092A
1093A
1096D | 50
64 | 1500 |) | 1989A | 30
34 | 2324 | 53 | 2533
2534 | 62
62 | 3093
3141 | 44
49 | 4991 | 60 | | 896A
903 | 53
51
49 | 1097A | 50 | | | 2058B
2060E | 53
53
33
37
66 | 2326
2326A
2327
2328 | 53
53 | 2533
2534
2535
2536 | 62
59
62 | 3143 | 59 | 5142
5273B
5303 | 39
66
56
56 | | 985B
986A | 66
50 | 1189
1193D
1193E | 59
43
43 | 1528
1549
1550D
1554D | 59
44 | 2068
2070
2073 | 37 | 2327
2328 | 53
54 | 2537
2538
2538A | 62
62 | 3149A
3149B
3149D | 63
63 | 5304
5350B | 56
64
51 | | 896A
903
985A
985B
986A
986D
986F | 51
66 | 1193F
1193G | 43 | 1554D
1561 | 44
55
53 | 2075D
2075E | 43
43 | 2329
2331 | 54
48 | 2538A
2540 | 59
62 | 3235 | 63
56 | 5350E
5493 | 38
41 | | 989 { | 34
34 | 1193H
1193J | 43
43 | 1561
1561A
1581G
1581H | 53
62 | 2108 | 34 | | | 2541
2543 | 62
62 | 3359
3360 | 54
54 | 5545
5565
5565A | 41 | | 989A
990 | 65
34 | 1196E
1196F | 58
58 | 1581H
1581P | 62
63 | 2109
2110
2111 | 50
50
50 | 2332 | 48 | 2544
2545 | 62
62 | 3375
3378 | 43
52 | 5566
5567 | 44 44 | | | 34
49 | 1196G
1199A | 58
58
58
49 | 1582B | 63
63 | 2112
2113 | 49 | 2333A
2333B | 48
48 | $2546 \\ 2547$ | 62
62 | 3396
3458 | 59
3 3 | 5601 | | | 991A
991B
994B | 66
64 | 1262
1262A | 63
63 | 1584
1585A
1586P | 63
63 | 2114
2115E | 44
63
63 | 2333
2333A
2333B
2334
2335
2335A
2336 | 51
51 | 2548
2549 | 62
62 | 3458A | 33 | 5601A
5602
5824 | 62
62
62
63 | | 995
996
997B | 64
64 | 1300
1301 | 30
30 | 1593
1596
1599 | 62
62 | 2124
2173A
2192 | 54
45 | 2335A
2336
2336A | 59
48
48 | 2551
2582 | 62 | 3619
3633 | 50
56 | 5851A
5852G | 34 | | 997B
998A | 64
64 | 1302
1303D | 30
30 | | 62 | 2201 A | 54 | 2337 | 54 | 2582
2586B | 50
64 | 3693
3712 | 64
39 | 5874
5876 | 34
44
44 | | 1000 | | 1304
1304A
1305D | 30
30
30 | 1602A
1614A | 62
63
63 | 2202
2202A | 54
54 | 2338 | 54
54 | 2600
2601 | 64
57 | 3713
3714
3716 | 39
39
39 | 5877
5919 | 4 | | | | 1306A | 30 | 1615
1616A
1617 | 63
56 | 2203
2204
2205 | 54
54
54 | 2338
2338A
2338B
2340 | 54
62 | 2604
2605 | 51
51 | 3717
3718 | 39
39 | 6055
6281A
6282 | 53 | | 1010B
1010D
1010E | 56
5 5 | 1307A
1309 | 30
30 | 1617 | 63
63 | 2205
2257
2258 | 54
66 | 2340A
2341 | 62
61 | 2662
2679
2694 | 59
52 | | 54 | 6283 | 53 | | 1010E
1010F
1011D
1 011E | 55
56
56 | 1310A
1310B | 30
30
30 | 1620
1687B
1687D
1687E | 64
63
63 | 2270 | 50 | 2341A
2342 | 62
62 | 2749 | 64 66 | 3818
4044
4045 | 59
34 | 6325
6370A
6467 | 53
49
56 | | | 55 | 1311
1314
1314B | 31
31 | | 63 | 2271
2272
2284 | 50
50
50 | 2343 | 59 | 2751
2763 | 55
32 | 4103
4120
4131 | 43
59
50 | 6519A
6521
6528 | 56 | | 1011F
1012A
1012B | 56
56 | 1318B | 31 | 1767
1769
1770 | 62
62
62 | 2293E
2294B | 64
59
59 | 2343A
2344 | 62
62 | 2764
2766 | 51
37 | | - 6 | 6528
6541
6599 | 5
6
6
6
5 | | 1012B
1013A
1014 | 56
56
56
56 | 1319B
1320B
1320 D | 31
31
31 | 1771A
1772 | 62
62
62 | 2295A
2296A | 59
51 | 2344A
2345 | 62 | 2776 | 37 | 4295
4375 | 39
45 | 6627
6631A | | | 015 | 56 | 1321B | 31 | 1771A
1772
1773
1786 | 62
34 | 2297
2302 | 51 | 2346
2360 | 40
54 | 2777
2778 | 37
64 | 4500 |) | 6631A
6659
6660 | 52 | | 029
029A | 55
55 | 1322
1322A | 31
31 | 1796 | 50 | 2307
2308 | 66
51
65 | 2361
2362 | 54 50 | 2780
2789 | 46
57 | | | 6659
6660
6660B
6682
6726
6777
6844
6940
7038
7038A
7073
7612 | 56
55
55
66
57
33
56
66
66
42 | | 030
031
031A
039 | 55
55
55 | 1325
1325A | 32
32 | 1855
1861
1861A | 55
40
40 | 2311
2312
2313 | 32
50
49 | 2364 | | 2789A
2790 | 57
67 | 4596
4645
4720 | 57
51
43 | 6726
6777 | 35 | | 081 | 55
49
50 | 1329A
1329B | 56 | 1861B
1898 | 40
40
62 | 2314
2316 | 50
50 | 2366 | 32
49 | 2790A
2791 | 66
66 | 4720
4721
4765A | 43
43
49 | 6940
6940 A | 6 | | 082
082E
084B | 50
66 | 1336A
1369 | 56
33
50 | 1899
1899A | 61
62 | 2317 | 50 | 2369
2370 | 50
50 | 2791
2792A | 50 | 4766A
4965A | 49
59 | 7038
7038A | 4: | | 1084B
1085B | 50
50 | 1379
1380B | 54
54 | 1902 | 50 | 2318
2319 | 50
50 | 2384
2387B | 64
84 | 2821 | 65 | 4965B
4967 | 59
59 | 7073
7612 | 4: | #### ALWAYS GIVE ENGINE SERIAL NUMBER Fig. 37. Arrangement Diagram List Division No. 1. General Engine Parts and Platform | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | | x17" | | | |-----------------------------------|--|--|--------------|----------------------------|----------------------------|--------------|-----------------------------|-----------------------------|------------------------|-------------------------|-------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used Cyl
Use | | 304A-C | Platform Stairs (Complete) for Low Mount | | Used | 1 | 1 | Used | 1 | 1 | 1 | 1 | 1 | | 304
304A
305D
301
302 | Stair Step. Step (Top). Rail Support. Stringer Floor Beam. Lower Bracket. | YK1304A
YK1304D
Y2KA1305A
YK1301B
YK1302B | | 4
1
2
2
2
2 | 4
1
2
2
2
2 | | 4
1
2
2
2
2 | 4
1
2
2
2
2 | 4
1
2
2
2 | 4
1
2
2
2 | 1 2 2 2 | | 303D | \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ | Y2JA1303C
Y2K1303D
#631
½"x134"
½"
½"
½"x1½" | | 10 3 3 3 2 | 10
3
3
3
2 | | 2
10
3
3
3
2 | 2
10
3
3
3
2 | 2
10
3
3
3 | 2
10
3
3
3 | 10
3
3
3 | | | Stair Stringer Support Cap Screw Lockwasher Lockwasher | ½ x1½
½ | | 2 | 2 | | 2 | 2 | 2 2 | 2 2 | 2 2 | | 1304B-C | Platform Stairs (Complete) for High Mount Note:—1304B-C same as 1304A-C except omit 1303D and add: | | | | | | | | | | | | 1303B
1304 | Stair Stringer
 Stair Stringer
 Stair Step | Y2JA1303B
Y2KA1303C
YK1304A | | 2 | 2 | | 2 1 | 2 | 2 1 | 2 1 | 2 1 | | Е | Stair Steps Dowel | #631 | | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | | 309-AC | Platform Railing (Complete) | Y3JA1309A
Y3KA1309B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 309 | " " Rail " " Rail " " Rail " " " " " " " " " " " " " " " " " " " | Y4KA1309B
Y5KA1309A
Y6KA1309B | | | | | | | 1 | 1 | | | 310A
310B
310A | End Hand Rail | Y2KA1310A
YJA1310B
YKA1310C | i | | | | 2 | 2 | 2 | 2 | 1 | | 1310B
1311
1300 | " Rail. " Rail Support. Hand Rail End Bracket. " " Bracket. | YKA1310C
YK1311B1
YKA1300A
Y3K1300B | í | 4 2 | 5
2 | ``i`. | 4 2 | 5 2 | 6 2 | 7 2 | 8 | | 306A | Stair Hand Rail (R. H.) | Y2JA1306B
Y2KA1306C | | 1 | 1 | | 1 | 1 | 1 | 1 | | | 1307A
1988B | Stair Hand Rail (L. H.). " Rail (L. H.). End Hand Rail Extension. | Y2JA1307B
Y2KA1307C
Y2JA1988C | | 1 2 | 1
2 | | 1 2 | 1 2 | 1 2 | 1 | 1 2 | | | \ " " Extension | Y2KA1988G
½"x3½"
½"x2
½" C. P. | 1 | 2 | 2 | 1
1
1 | 2 2 2 2 | 2 2 2 2 | 2 2 2 2 | 2 2 2 2 | 2 2 2 2 | | | Hand Rail End Bracket Hollow Set Screw. " Support Cap Screw. " Lockwasher. | 38"x15"
12"
12"
12"
12"
12"
12"
12"
12 | 1 | 2 4 8 | 2
4
10 | 1 | 2 4 8 | 2
4
10 | 2
4
12 | 2
4
14 | 10 | | | " " Set Screw. " " Cap Screw Nut. Stair Hand Rail Cap Screw. " " Lockwasher. " " Lockwasher. | 1/2"x21/2"
36"x1/2"
1/2"C.P.
3/6"x2"
3/4" C. P. | 1
1 | 4
4
8
2
2 | 6
5
10
2
2 | 1 1 | 4
4
8
2
2 | 6
5
10
2
2 | 8
6
12
2
2 | 10
7
14
2
2 | 1 1 | | 320D-AC | Platform Floor (Complete) | 74 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | | | (Floor Plate | Y2JA1320B
Y2KA1320D | ::::: | 1 | | | 1 | | | | | # List Division No. 1. General Engine Parts and Platform (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | , | | | 14"x | 17" | | | |---|--|--|----------------|-----------------------------|-------------------------|---------------------------------------|-------------------------|-------------------------|--------------------------|---------------------------|---------------------------| | Repair
Number | on Page 33. | or | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | | NAME OF PART | Size | Cyl.
Used Cyl | | 1320B | Floor Plate | Y3JA1320A
Y3KA1320B
Y4KA1320B
Y6KA1320B | | | 1 | | | 1 | 1 | 1 | 1 | | 1320D
1314
1321B
1322
1322A | Floor Plate | YJA1320C
YKA1320E
YKA1314A
Y4KA1321B
Y6KA1321B
Y2J1322A
Y3K1322B
¼"x½"
¼"x½"
¼"x6"x32½" | 1
1
 | 1 4 4 1 | 2
8
8
8 | 1
1
 | 1
4
4
1 | 2
8
8
8 | 1
3
12
12
12 | 1
4
16
16
16 | 1
6
20
20
5 | | 1318B | Platform Angle (Stair End) | Y2JA1318A
Y2KA1318C
Y3KA1318B
Y4KA1318B
Y5KA1318A
Y6KA1318B | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1319B | Platform Angle (Opp. Stair End) | Y2JA1319A
Y3JA1319A
Y2KA1319C
Y3KA1319B
Y4KA1319B
Y5KA1319A
Y6KA1319B | | 1 | 1
 | : : : : : : : : : : : : : : : : : : : | 1 | 1 | | 1 | 1 | | 314B | Platform Bracket Floor Plate Flat Head Cap Screw # | YKA1314C1
½"x2"
½"x1½"
½"C. P.
½"x1"
½"x1"
½"C. P. |

1
1 | 2
4
7
11
11
 | 3
6
9
15
15 |
1
1 | 2
4
7
11
11 | 3
6
9
15
15 | 4
8
13
21
21 | 5
10
15
25
25 | 6
12
19
31
31 | | 195 | Name Plate (Always give engine serial number) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Note:—When ordering injection tubes, specify AR1, AR2, AR3 or AR4 where found in list. See Fig. 37 on page 34 to determine engine rotation. | | | | | | | | | | | |---|--|--|-------|------------------|-------|--------|-----------------------|-------|---------|------------------|---| | 421H
421G | Injection Tube, Nozzle to Pump (81"), (Complete) | YJA421L
YKA421M | 1 | | | 1 | | | | | | | 422J | Injection Tube, Union to Pump (89"), (Complete) AR2 and AR4 Tube, " (93"), (Complete) AR1 and AR3 | Y2JA422K
Y2JA422L | | 2 2 | | | | | | | | | 422H | Injection Tube, Union to Pump (97"), (Complete) AR2 and AR4 Tube, " (99½"), (Complete) AR1 and AR3 | Y2KA422N
Y2KA422P | | | | ::::: | 2 2 | | | | | | 423J | (Injection Tube, Union to Pump (113½"), (Complete) AR2 and AR4. Tube, " (124"), (Complete) AR1 and AR3. | Y3JA423G
Y3JA423H | | | 3 3 | | 100 | | | 5-38 | | | 423H | Injection Tube, Union to Pump (128"), (Complete) AR2 and AR4 Tube, " " (111"), (Complete) AR1 and AR3 | Y3KA423N
Y3KA423P | | | | | | 3 3 | | | | | 424H | Injection Tube, Union to Pump (174"), (Complete) AR2 and AR4 Tube, " (176"), (Complete) AR1 and AR3 | Y4KA424P
Y4KA424Q | | | | ::::: | | ::::: | 4 4 | | | | 425G | [Injection Tube, Union to Pump (209"), (Complete) AR2 and AR4. Tube, " " (193½"), (Complete) AR1 and AR3. | Y5KA425N
Y5KA425P | | | | | | | | 5 5 | | | 427G | [Injection Tube, Union to Pump (238½"), (Complete) AR2 and AR4 . Tube, Union to Pump (214½"), (Complete) AR1 and AR3 . | Y6KA427N
Y6KA427P | | | | ::::: | | | | | | | 426G | Injection Tube, Nozzle to Union (44¾"), (Complete) | Y2JA426D | | 2 | 3 | | | | | | | | 426F | Injection Tube, Nozzle to Union (501/4"), (Complete) | Y2KA426H | | | | | 2 | 3 | 4 | 5 | - | | | See Page 59 for Injection Tube Clamps. Note:—Injection tubes are furnished complete with fittings as shown in Repair Chart No. 1A. Fittings may be ordered separately as follows. | | | | | | | | | | - | | 92A
92B
96
96A
210A
210B | Injection Tube Connection Gland—Pump | YKA92B
YJA92A
YF96B
YKA96B1
YKA210A
YJA210A | i
 | 2
2
2
2 | 3 3 3 | 1
1 | 2
2
2
2
2 | 3 3 3 | 4 4 4 4 | 5
5
5
5 | | # List Division No. 2. Upper and Lower Base Repair Chart No. 2 | | Before Ordering Repair Parts Read the Instructions | Symbol | 1 | 12"x15 | * | - | | 14" | x17" | | | |--|--|---|---|----------------------------|-----------------------------|------------------------|------------------------|------------------------|--------------|-------------------|-----------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | Cy
Use | | 420
205A
205B
1325
1325A
214 | Injection Tube Connection Nut—Pump | YKA420A
YKA205B
YKA205C
YK1325A
Y2JA1325A
YKA214A | 1
1 | 2
2
2
2
2 | 33 | 1 | 2
2
2
2 | 3 3 3 | 4 4 4 | 5
5
5 | 6 6 6 | | 6726 | Pipe Gland Nut Wrench (Not Shown) | YKA6726A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2F-C | Upper Base (Complete), Cyl. #1 | | 1 | 1 | 1 | | | | | | | | 2F | Upper Base, always with. "Cylinder Stud. Hand Hole Cover Stud. Upper Base Oil Ring Pipe Plug. Air Valve Stud. | YJA2G4
138"x51/2"
56"x21/4"
58"x21/4" | 1
12
6
3
6 | 1
12
6
3
6 | 1
12
6
3
6 | | | • | | | | | 2311
2364
409B
604A
2763
2773
2774
182B
199A | Upper Base Oil Ring Cover. " " Gasket. " Cap Screw. Upper Base to Lower Base Dowel. Cylinder Stud Nut. " Washer. Lower Step Nut. " Washer. Upper Base Hand Hole Cover. " Gasket." | YKA2311A
YKA2364A
½"x¾"
YKA409B
YJA604A
YJA2763A
YKA2773A
YKA2774A
YJA182C
YJ199 | 2
8
4
4
2
2
2
1
1 | 2
2
8
4 | 2
2
8
4 | | | | | | | | 2H-C | Upper Base (Complete), Cyl. #2, #3 | | | 1 | 2 | | | | | | | | 2Н | Upper Base, always with. "Cylinder Stud. Hand Hole Cover Stud. Air Valve Stud. Crank Pin Oiler Pipe Plug. | YJA2H4
1 3/8"x51/2"
5/8"x21/4"
5/8"x21/4" | | 1
12
6
6
3 | 2
24
12
12
6 | | | | | | | | 2311
2364
409B
182B
199A | Side Hand Hole Cover | YKA2311A
YKA2364A
*%"x34"
YKA409B
YJA182C
YJ199 | | 2
2
8
4
1
1 | 4
4
16
8
2
2 | | | | | | | | 2L-C | Upper Base (Complete), Cyl. #1 | | | | | 1 | 1 | 1 | | | | | 2L | Upper Base, always with. "Cylinder Stud. Hand Hole Cover Stud. Upper Base Oil Ring Pipe Plug. Air Valve Stud. | YKA2AA
1½"x53¼"
5%"x2¼"
5%"x2¼" | | | ::::: | 1
12
6
3
6 | 1
12
6
3
6 | 1
12
6
3
6 | | | | | 2311
2364 | Upper Base Oil Ring Cover " " Gasket " " Cap Screw | YKA2311A
YKA2364A
¾"x¾" | | | | 2
2
8 | 2
2
8 | 2
2
8 | | | | # List Division No. 2. Upper and Lower Base (Continued) | | Before
Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | | x17" | | | |--------------------------|--|---|---|--------------|--------------|--------------|--------------|---------------|----------------|----------------|-------| | Repair
Number | on Page 33. NAME OF PART | Size | Cyl.
Used Cy | | 604A
2763 | Cylinder Stud Nut Washer. | YKA604A
YKA2763A | | | | 4 2 | | | | | | | 182B
199A | Upper Base Hand Hole Cover | YKA182C
YK199 | | | | 1 | 1 | 1 | | | | | 2M-C | Upper Base (Complete), Cyl. #1 | YKA2Z | | | | | | | 1 | 1 | | | 2141 | Upper Base, always with. Cylinder Stud. Hand Hole Cover Stud. | 1½"x5¾"
½"x2¼" | | ::::: | | ::::: | | | 12
6 | 12
6 | -1 | | 2311 | Upper Base Oil Ring Pipe Plug | %"x2¼"
YKA2311A | | | | | ::::: | | 3
6
2 | 3
6
2 | | | 2364 | Air Valve Stud. Upper Base Oil Ring Cover. " " Gasket. " Cap Screw. | YKA2364A
3/8"x 3/4"
YKA182C | | ::::: | | | | | 8 | 8 | | | 182B
199A | Upper Base Hand Hole Cover Gasket. | YK199 | | | | | | | 1 | 1 | | | 2N-C | Upper Base (Complete), Cyl. #2, #3, #4, #5, #6
Upper Base, always with.
"Cylinder Stud" "Hand Hole Cover Stud" | YKA2Y1 | • | ••••• | | | 1 | 2 2 | 3 | 4 | | | | " Cylinder Stud. " Hand Hole Cover Stud. | 11/4°x53/4°
56°x21/4°
56"x21/4" | | | ::::: | | 12
6
6 | 12
12 | 36
18
18 | 48
24
24 | 60000 | | | Air Valve Stud.
Upper Base Oil Ring Pipe Plug. | 1/8"
YKA2311A | | | | | 3 | 6 | 9 | 12 | 1 | | 3311
2364 | Upper Base Oil Ring Cover | YKA2364A | | | | | 2 2 8 | 4
4
16 | 6
6
24 | 8
8
32 | 1 1 4 | | 182B
199A | Upper Base Hand Hole Cover | %"x¾"
YKA182C
YK199 | ::::: | | | | 1 | 2 2 | 3 | 4 4 | | | 14H-C | Lower Base (Complete) | YJA14K2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | " Base, always with | Y2JA14L2
Y3JA14H3 | | 1 | 1 | | | | | | 100 | | 14H | Base, always with Base, always with Base, always with | YKA14Q3
Y2KA14J2
Y3KA14G3 | | | | 1 | 1 | 1 | | | | | | " Base, always with " Base, always with " Base, always with | Y4KA14G3
Y5KA14E4
Y6KA14G3 | | | | ::::: | | | 1 | 1 | | | | Upper to Lower Base Stud | | 4 | 8 | 12 | | | | | | | | | " " Stud St | 1 1/6 x 4 1/2 1 1/4 x 6 3/4 1 1 1/4 x 9 1/4 1 | 6 4 | 12
8 | 18
12 | 8 4 2 | 16
8
2 | 24
12
2 | 32
16
2 | 40
20
2 | 2 | | | Main Bearing Stud | 1 1 18 16 1
1 1 19 | 6 | 6 | 6 | 4 | 4 | ×4 | 4 | 4 | | | | " Stud. Main Bearing Stud. Covernor Case Stud | 1 % x7 % 1 % x4 % 1 % x4 % 1 % x6 % 1 % x 9 % 1 % x 9 % 1 % x 9 % 1 % x 6 % 1 % 1 % x 6 % 1 % 1 % x 6 % 1 % 1 % x 6 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % | 6 | 2 6 | 4 6 | 6 | 6 | 6 | 6 | 8 | 1 | | | Governor Case Stud. Lubricating Oil Sump Stud. Governor Drain Pipe Plug. | 7 x8 1/4
YKA2068A1 | 1 1 | 2
1
2 | 1 3 | 2 | 1 2 | 1 3 | 2 | 2 | | | 2068 | Crank Pin Oiler Bracket. " " Cap Screw. " " " Cockwasher. | % X1 | 2 2 | 4 | 6 | 1
2
2 | 4 4 | 6 | 8 8 | 5
10
10 | 1 1 | | 254A | " " Spout" " Lubricator Oil Tube Fitting" " " Tube Elbow" | YKA254A
½"P.x½"T.
½"P.x½"T.
YJA1336A | 1 1 1 | 2 2 2 | 3 3 3 | 1 1 1 | 2 2 2 | 3 3 3 | 4 4 4 | 5
5
5 | | | 336A | { " " " Tube | YKA1336A | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | 812D
812F
813B | Main Bearing Shell Oil Stop. " " " Stop. " " " Stop. | YJA812D
YKA812H1
YJA813C | 2 | 22 | 2 | 2 | 2 | 2 | 2 | 2 | | | 813D
814B | " " Stop Main Bearing Shell Oil Stop (Center) " " Stop (Center) | YKA813C
Y2JA814C | | 2 | 4 | 2 | 2 | 2 | 2 | 2 | | | 814D
805D-C
805F-C | Bearing Can (Cox End) | | i | i | 1 | 1 | 1 | 1 | 6 | 8 | 1 | | 806D-C
806F-C | " (Gov. End) " (Opp. Gov. End) " (Opp. Gov. End) " Cap (Center). | | 1 | 1
i | 1 | 1 | 1 | 1 | 1 | 1 | | | 807D-C
807F-C | " " (Center) Main Bearing to Upper Base Capscrew " " Dowel | 1½" x 7¼" | | | | 4 | 1 8 | 2
12 | 3
16 | 4
20 | 1 | | 409D
458 | " " " Dowel | | 4 | 4 | 4 | 4 | 8 | 12 | 16 | 20 | 2 | | 458A | " Blocks (Center) " Taper Dowel | YKA3458C1 | 1 8 | 2 | 1 | | | | | | | | 409A
298D-C | " Taper Dowel. " Cap Screw. Bearing Oil Gauge. | %"x21/4" | 4 | 12
6
1 | 16
8
1 | 1 | 1 | 1 | 2 | 2 | | | 355B-C
2F-C | Lower Base Air Inlet. Upper Base (Cyl. #1) " Base (Cyl. #2, #3). " Base (Cyl. #1) | | 1 | 1 1 1 | 1 2 | 1 | 1 | 1 | 2 | 2 | | | 2H-C
2L-C
2M-C | " Base (Cyl. #1)
" Base (Cyl. #1) | | | | | 1 | 1 | 1 | 1 | 1 | | | 2N-C
197B | " Base (Cyl. #1) "Base (Cyl. #2, #3, #4, #5, #6). (Upper to Lower Base Gasket. "Gasket. "Gasket." | YJA197B
YJA197C | 2 4 | 4 8 | 6 12 | | 1 | 2 | 3 | 4 | | | 197D
197E | Upper Base to Lower Base Gasket (Used with YKA197D) | YKA197D
YKA197E | | | | 4 2 | 8 | 12
6 | 16
8 | 20
10 | 2 | | | Resping Oil Pining (Not Fur Sen) | | 1 1 4 | 1 1 6 | 1 1 8 | 1 1 4 | 1 1 6 | 1 1 8 | 1
1
10 | 1
1
12 | 1 | | | Oil Drain Piping (Not Fur. Sep.). Lower Base Pipe Plug. % C. P. S. F. Nuts. 1½ C. P. S. F. Nuts. | | 16 | 8 28 | 12
40 | 12 | 24 | 36 | 48 | 60 | 7 | | | 1½° C. P. S. F. Nuts.
1½° C. P. S. F. Nuts.
½° C. P. S. F. Nuts. | | 4 | 8 | 12 | 6 | 8 | 10 | 12 | 14 | 1 | | | 7/8" Plate Washer | | 1 | î | Î | | 2 / 5 | | | | | # List Division No. 3. Crankshaft, Flywheel and Bearings Repair Chart No. 3 | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | • | 1 | | 14"x | 17" | | | |--|--|---|-----------------------|-----------------------|-------------------------------------|-----------------------|-----------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | 1
Cyl.
Used | 2
Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | 6
Cy
Use | | D5852T
E5852T | Base Sump Nipple $(6'')$ | Y5KA5852A
Y6KA5852A | ::::: | ::::: | | | | :::: | ::::: | 1 | 1 1 | | A6844K
B6844K
D6844K
D6844K
E6844K
F6844K | Base Sump Pipe (22") " " Pipe (55") " " Pipe (88") " " Pipe (121") " " Pipe (124") " " Pipe (187') " " Pipe (187') " " Pipe (187') " " Pipe (197') " " Pipe (197') " " Pipe (197') | YKA6844G
YKA6844H
YKA6844K
YKA6844K
YKA6844L
YKA6844M
½" x 21½"
½" x 51"
½" x 80" | i | | 1
1
1 | 1 | 1
1
 | 1
1
1
 | 1
1
1
1
 | 1
1
1
1 | 1 1 1 1 1 1 1 | | 1090
5851A | Base Sump Pipe Clamp. | Y3KA1090A
Y4KA1090A
Y6K1090A
½" x 2"
½" x 2½"
½"
½"
YKA5851D | 1
1 | 2 2 | 2

2
2
2
2
3
3 |

i
1 | | 2
2
2
2
2
3
3 | 2
2
4
4
4
4 | 2
2
2
7
7
7
5
5 | 2
2
2
7
7
6
6 | | 13H-C | Flywheel (Complete) (Belted Commercial) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 13H
402
⊕
403A | Flywheel | YJA13T
Y3JA13F
Y2JA13Y
Y6KA13T
Y4KA13G
YKA402A
214" C.P.
1½" x 634"
1½" C.P. | 1
4
8
6
6 | 1
4
8
6
6 | 1
4
8
6
6 | 1
4
8
6
6 | 1
4
8
6
6 | 1
8
6
6 | 1
4
8
6
6 | 1
4
8
6
6 | 1
4
8
6
6 | | 13J-C | Flywheel (Complete) (Belted Commercial)
Note:—Rims drilled for straight pulling bar. | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 13J | Flywheel 66"x 7", always with. | YJA13V
Y3JA13G
Y2JA13Z
Y6KA13U | 1 | 1 | 1 | 1 | 1 | 1 | | | | ALWAYS GIVE ENGINE SERIAL NUMBER List Division No. 3. Crankshaft, Flywheel and Bearings (Continued)
 | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | 1 0 | 14"x | | 1 " | | |------------------|--|---|--------------|--------------|-------------|--------------|--------------|-------------------|---|------------------|---| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | Cyl
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl
Used | C | | | Flywheel 78"x10", always with | Y4KA13H | | - | | | | | 1 | 1 | - | | 402 | " Hub Bolt | VKA402A | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | " " Nut" " Extension Shaft Stud | 2¼ ° C. P.
1½ ″x6¾ ″ | 8 | 8 | 8 6 | 8 6 | 8 | 8 | 8 | 8 | | | | " Extension Shaft Stud | 2¼ ° C. P.
1½ ′′x6¾ ′′
1½ ° C. P. | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | 403A | Flywheel Key | YKA403A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 13K-C | Flywheel (Complete) (Direct Connected) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | | | Note:—For Barring Device. | | | | | | | | | | | | | (Flywheel 66"x13", always with | YJA13U
Y2JA13Y | 1 | 1 | 1 | | | | | | 1 | | 13K | " 66"x11", always with " 86"x14", always with " 80"x14", always with " 78"x10", always with. | YKA13AA | | | | 1 | | | 1 | | | | | " 78"x10", always with | Y2KA13Z
Y4KA13G | | | | | 1 | 1 | 1 | 1 | | | 402 | Flywheel Hub Bolt | YKA402A | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | " " Nut " Extension Shaft Stud | 2¼" C. P.
1½"x6¾"
1½" C. P. | 8 | 8 | 8 | 8 6 | 8 | 8 | 8 | 8 | | | | " Extension Shaft Stud | 1½ ° C. P. | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | 403A | Flywheel Key | YKA403A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 13L-C | Flywheel (Complete) (Direct Connected) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 131-0 | Note:—Rims drilled for straight pulling bar. | | - | - | • | - | 1 | | • | - | | | | Flywheel, 66"x13", always with | YJA13W
Y2JA13Z | 1 | 1 | 1 | | | | | | | | 13L | | YKA13AB | | | | 1 | | | | | | | | " 78"x10", always with | Y2KA13AA
Y4KA13H | | | | | 1 | 1 | 1 | 1 | 1 | | 402 | Flywheel Hub Bolt | YKA402A | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | " " Nut | 2¼ ° C. P.
1½ x6¾ ° | 8 | 8 | 8 | 8 | 8 6 | 8 | 8 | 8 | 1 | | | " Extension Shaft Stud | 1½" C. P. | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | 403A | Flywheel Key | YKA403A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 13M-C | Flywheel (Complete) (Belted Electric) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | (Flywheel 56"x16½", always with | YJA13R | 1 | | | | | | | | | | | " 56"x16" always with | Y2JA13W
Y3JA13J | | | 1 | | | | | | | | 13M | " 67"x16" always with | YKA13X | | | | 1 | | | | | | | | " 67"x18" always with | Y2KA13V | | | | | 1 | | 7.66 | 1000 | 1 | | | " 67"x25" always with | Y3KA13P
Y4KA13G | | | | ::::: | | 1 | 1 | 1 | - | | 100 | " Hub Bolt | | 4 | | 4 | 1 | 1 | 4 | 4 | 4 | | | 402
402A | " Bolt | YJA402B | 4 | 4 | 4 | 4 | 4 | * | * | * | | | | " " Nut. | 2¼ ° C. P. | 8 | 8 | 8 6 | 8 6 | 8 6 | 8 | 8 | 8 | | | | Extension Shaft Stud | 2¼ ° C. P.
1½ ′ x6¾ ′
1½ ° C. P. | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 1 | | 403A | Flywheel Key | Control Science Control | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 13N-C | Flywheel (Complete) (Belted Electric) | | | | | | | | 1 | 1 | 1 | | 10N | Note:—Rims drilled for straight pulling bar. Flywheel 78"x10", always with | Y4KA13H | | | | | | | 1 | 1 | | | 13N
402 | " Hub Bolt | YKA402A | | | | | | | 4 | 4 | K | | | " " Nut.
" Extension Shaft Stud | 2¼ ° C. P. | | | | | | | 8 | 8 | 1 | | | " " Nut | 2¼ ° C. P.
1½ ′x6¾ °
1½ ° C. P. | | | | | | | 6 | 6 | | | 403A | Flywheel Key | YKA403A | | | | | | | 1 | 1 | | | | | | - | - | - | | - | - | - | | - | | 13P-C | Flywheel (Complete) (Belted Commercial and Belted Electric for Overhung Drive) | | 1 | 1 | 1 | 1 | 1 | | | | | | | 에 가는 위에 가는 사람들이 가지 않는 것이 되었다. 그 사람들은 사람들이 되었다면 하는데 그렇게 하는데 하는데 되었다면 하는데 되었다. | | | | | | | | | | | | | Flywheel | YKA13AF
YKA13AG | | | | 1 1 | | | | | | | | "—67"x18" (Commercial and Electric Flat-Belt), | | 11.00 | | | 1 | | | | | | | | always with | Y2KA13V | | | | | 1 | | | | | | | always with. always with. -56'x16'%' (Electric Flat-Belt), always with. -56'x18' (Electric V-Belt), always with. -56'x11' (Commercial Flat-Belt), always with. | Y2KA13AK | | | | | 1 | | | | | | | " —56"x16½" (Electric Flat-Belt), always with | YJA13AF
YJA13AD | 1 1 | | | | | | | 1 | i | | 13P | " —56"x11" (Commercial Flat-Belt), always with | YJA13AE | 1 | | 17.50 | | | | | | | | | " —56"x"11" (Commercial V-Belt), always with | YJA13AC
Y2JA13W | 1 | 1 | | | | | | | | | | " —56"x16" (Electric V-Belt), always with | Y2JA13AP | | 1 | | 100 | | | | 1 | 1 | | | " —50"x16" (Commercial Flat-Belt), always with | Y2JA13AM
Y2JA13AK | | 1 | | | | | -34 | - | | | | "—50"x24" (Commercial Flat-Belt), always with | Y3JA13P | | | 1 | | 1 | | | | | | 100 1 | " —56'x11' (Commercial Flat-Belt), always with. " —56'x11' (Commercial V-Belt), always with. " —56'x16' (Electric Flat-Belt), always with. " —56'x16' (Electric V-Belt), always with. " —50'x16' (Commercial Flat-Belt), always with. " —50'x16' (Commercial V-Belt), always with. " —50'x24' (Commercial Tat-Belt), always with. " —50'x24' (Commercial V-Belt), always with. | Y3JA13N
YJA402B | 4 | 4 | 1 4 | | | | | | | | 402A
402 | | YKA402A | | 4 | 4 | 4 | 4 | | | | 1 | | (| " Bolt | 2¼"
YKA403A | 8 | 8 | 8 | 8 | 8 | | | | 1 | | 403A
403A | " Key Key | YKA403A
YKA403C | i | 1 | 1 | 1 | 1 | | | 10.5 | - | | 25B-C | Crankshaft (Complete) | | | | | 1 | 1 | 1 | | | 1 | | | Crankshaft (8" Diam., always with | YKA25C1 | | | | 1 | | | | | 1 | | | 11 | | 1 | 1 | 1 | 1 | 1 | | 130 | | 1 | | 25B | " (8" Diam.), always with | Y2KA25C2
Y3KA25B3 | | | | | - | 1 | 100000000000000000000000000000000000000 | | | # List Division No. 3. Crankshaft, Flywheel and Bearings (Continued) | D | Before Ordering Repair Parts Read the Instructions | Symbol | | 12'x15 | | - | . 0 | 14"x | | | _ | |---|---|---|-----------------------|---------------------------|-----------------------|--------------------------------------|---|--|-----------------------------------|----------------------------------|---| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used C | | 164A
26B
26D
138
139
139A | Crankshaft Oil Throw Ring. | YKA164A
YKA26A
Y3KA26C2
YK138
YKA139A
YKA139B | ::::: | | ::::: | 1
2
2
2 | 1
4
4
4 | 1
6
6 | | | | | 658B | " Mushroom " Governor Spider Stud " Nut. | Y3K658
5%"x21/4"
5%" C. P. | | | | 4
3
3 | 8 3 3 | 12
3
3 | | | | | 2070
405
253A-C
165G-C | Crankshaft Governor Spider Stud Washer. Oil Ring to Shaft Gasket. Crank Pin Oil Ring. Air Stop Ring. | YK405 | | | | 3
1
1
2 | 3
2
2
4 | 3
3
6 | | | | | 25D-C | Crankshaft (Complete) | | 1 | 1 | 1 | | | | 1 | | - | | 25D
164A
164B
26A
26D
138
139
139A | Crankshaft (7½" Diam.), always with. " (7½" Diam.), always with. " (7½" Diam.), always with. Crankshaft (9" Diam.), always with. " (9" Diam.), always with. Crankshaft Oil Throw Ring. " Ring. Crankshaft Counterweight. " Counterweight. " Dowel. " Bolt. " Bolt. | YJA25B1
Y3JA25C2
Y3JA25A2
Y4KA25H2
Y6KA25G1
YKA164A
Y6KA164B
YJA26A
YJA26E
YK138
YJA139A
YJA139C | 1
1
2 | 11444 | 1
1
6
6
6 | | | | 1 | 1 | | | 658B | " " Nut. " Mushroom. Crankshaft Governor Spider Stud. " Nut. " | 1½" C. P.
Y3K658
%"x2½"
%" C. P. | 4 4 3 3 | 8 8 3 3 | 12
12
3
3 | | | | 3 | 3 3 | | | 070
405
253A-C
253D-C | Crankshaft Governor Spider Stud Washer. Crank Pin Oil Ring to Shaft Gasket. " " Ring. " " Ring. | YK405 | 3
1
1 | 3
2
2 | 3 3 | | | | 3
4
4 | 3
5
5 | | | 165H-C
25E-C
25E | Air Stop Ring Crankshaft (Complete) Crankshaft (9° Diam.) | | 2 | 4 | 6 | | | | 8 | 1 1 | | | 165K-C | Remainder of group same as 25D-C. Air Stop Ring (Complete) | | | | | 2 | 4 | 6 | | _ | | | 165K
191
192 | Air Stop Ring (Top), always with | YKA165E1
YKA165F1
YK191A
%"
1/6"x31/2"
Y2J192 | | | | 2
2
4
4
4 | 4
4
8
8
8
8 | 6
6
12
12
12
12 | | | 1 | | 393H
392
394
394A
193B | Back Lash Set Screw. " " Spring. " " Clip " Clip Air Stop Ring Spring. " " Cap Screw. " " " Cap Screw. " " " " Nut. Dog Point Set Screw Jam Nut. Air Stop Ring Lockwasher | YKA393C
YK392A
YK394
YKA394A
YKA193A1
%6"x2"
%6" C. P. | | | | 4
2
2
8
2
2
6
6 | 8
4
4

16
4

4
12
12 | 12
6
6
24
6
6
18
18 | | | | | 165H-C | Air Stop Ring (Complete) | | 2 | 4 | 6 | | | | 8 | 10 | | | 1 65H
191
192 | Air Stop Ring (Bottom), always with | YJA165F
Y6KA165E1
YJA165E1
Y6KA165F1
YK191A
56"
'46"x3½"
Y2J192 | 2
4
4
4
4 | 4

8
8
8
8 | 6
 | | | | 8
16
16
16
16 | 10
20
20
20
20
20 | | | 392
393G
393J
394
394A | Air Stop Ring Back Lash Spring. " " " " Screw. " " " "
Screw. " " " " " Clip. | YK392
YKA393B4
YKA393D1
YK394
YJA394B | 2
2
2
2
 | 4
4
4
4 | 6
6
6 | | | | | | | | 393D
393E
392
776
193B
766 | Driving Stud. Oil Throw Ring Driving Stud. Driving Spring Plug. Air Stop Ring Spring. Driving Set Screw. | Y4KA393A1
Y4KA393B1
Y4KA392B
Y4KA2776B
YKA193A1
Y4KA2766B | 8 | 16 | 24 | | | | 4
4
8
8
32
8
16 | 5
10
10
40
10
20 | | | 777 | " " Jam Nut. Driving Clamp " Cap Screw " " Lockwasher " " " Lockwasher " " Lockwasher " " Lockwasher | %" C. P.
Y4KA2777A1
%"x1%"
%" C. P. | | | | | | | 8
4
4
4
4
4 | 10
5
5
5
5
5
5 | | | 253A-C | Crank Pin Oil Ring (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | | | - | | 253A | Crank Pin Oil Ring, always with | Y4KA253A2 | 1 | | 3 | | | | | | 1 | # List Division No. 3. Crankshaft, Flywheel and Bearings (Continued) | | Before Ordering Repair Parts Read the Instructions | | | 12"x15 | | | 1 | 14"x | | | | |------------------------------|---|---|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------| | Repair
Number | on Page 33. NAME OF PART | Symbol
or
Size | Cyl.
Used Cy
Use | | | Crank Pin Oil Ring Cap Screw | ½"x4¼" | 2 2 | 4 4 | 6 6 | 2 2 | 4 4 | 6 6 | | | | | 253D-C | Crank Pin Oil Ring (Complete) | | | | | | | | 4 | 5 | | | 253D | Crank Pin Oil Ring, always with | Y6KA253C
Y6KA253D
½″x4¼″
½″ | | | | | | | 4 4 4 | 5 5 5 | 6666 | | 816 E- C | Main Bearing Shell (7½" Diam.) (Opp. Gov. End) | | 1 | 1 | 1 | | | | | | | | 816E
817E
5493 | Main Bearing Shell (2 pcs. 5 1/8" lg.), always with | YJA816D1
YJA817D3
CKB5493A | 1
1
4 | 1
1
4 | 1
1
4 | | | | | | | | 820A
823G
823H
823J | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | YJA820A
YJA823D1
YJA823E1
YJA823F1 | 1
6
4
6 | 1
6
4
6 | 1
6
4
6 | | | | | | | | 816 F-C | Main Bearing Shell (8" Diam.) (Opp. Governor) | | | | | 1 | 1 | 1 | | | | | 816F
817H
5493 | Main Bearing Shell (14½" lg.), always with " Shell (14½" long) (Not Fur. Sep.) " Shim Dowel | YKA816D1
YKA817E
CKB5493A | | | | 1
1
4 | 1
1
4 | 1
1
4 | | | | | 820A
823G
823H
823J | Main Be ing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | YJA820A
YKA823K1
YKA823L1
YKA823M1 | | | | 1
2
4
8 | 1
2
4
8 | 1
2
4
8 | | | | | 816G-C | Main Bearing Shell (9" Diam.) (Opp. Gov. End) | | | | | | | | 1 | 1 | 1 | | 816G
817G | Main Bearing Shell (6 1/8", 6 5/8" long), always with | Y6KA816E1
Y6KA817E3
#409 | | | | | | | 1
1
4 | 1 1 4 | 1 | | 820B
823K
823L
823M | Main Bearing Shell Dowel | Y5KA820A
Y4KA823A1
Y4KA823B1
Y4KA823C1 | | | | | | | 1
6
4
6 | 1
6
4
6 | 4 | | 818 E -C | Main Bearing Shell (7½" Diam.) (Governor End) | | 1 | 1 | 1 | | | | | | | | 818E
819E
5493 | Main Bearing Shell (2%", 5%" long), always with | YJA818D1
YJA819D3
CKB5493A | 1
1
4 | 1
1
4 | 1
1
4 | | | | | | | | 820A
827G
827H
827J | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | YJA820A
YJA827G2
YJA827F2
YJA827E2 | 1
6
4
6 | 1
6
4
6 | 1
6
4
6 | | | | | | | | 818 F -C | Main Bearing Shell (8" Diam.) (Governor End) | | | | | 1 | 1 | 1 | | | | | 818F
819F
5493 | Main Bearing Shell (211/6", 41/6" long), always with | YKA818C
YKA819D
CKB5493A | | | | 1
1
4 | 1
1
4 | 1
1
4 | | | | | 820A
827G
827H
827J | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | YJA820A
YKA827G2
YKA827H2
YKA827J2 | | | ::::: | 1
2
4
8 | 1
2
4
8 | 1
2
4
8 | | | | | 818G-C | Main Bearing Shell (9" Diam.) (Governor End) | | | | | | | | 1 | 1 | 1 | | 818G
819G | Main Bearing Shell (211/16", 41/16" long), always with. "Shell (87/8" long) (Not Fur. Sep.). "Shim Dowel | Y6KA818E
Y6KA819E
#409 | | | | | | | 1
1
4 | 1
1
4 | 1 1 | | 820B
827K
827L
827M | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. | Y5KA820A
Y4KA827A3
Y4KA827B3
Y4KA827C3 | | | | ::::: | | | 1
6
4
6 | 1
6
4
6 | 1 6 | | 821 E -C | Main Bearing Shell (7½" Diam.) (Center) | | | 1 | 2 | | | | | | | | 821E
822E | Main Bearing Shell (2 Pcs. 311/6" long), always with | Y2JA821E
Y2JA822E2 | | 1 1 | 2
2 | 50 | | | | | | # List Division No. 3. Crankshaft, Flywheel and Bearings (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | 1 | 12″x15 | " | | | 14": | x17" | | 0.2 | |--|--|--|---------------------------|--------------------------------|-----------------------------|-------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used Cyl
Use | | 820A
831F
831G
831H | Main Bearing Shell Dowel | YJA820A
Y2JA831D1
Y2JA831E1
Y2JA831F1 | 2 | 3
6
4
6 | 4
12
8
12 | | | | | | | | 821F-C | Main Bearing Shell (8" Diam.) (Center) | | | | | | 1 | 2 | | | | | 821F
822F
5493 | Main Bearing Shell (10½" long), always with | Y2KA821C
Y2KA822E
CKB5493A | | | | | 1
1
4 | 2
2
8 | | | | | 820A
831F
831G
831H | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | YJA820A
Y2KA831B1
Y2KA831C1
Y2KA831D1 | ::::: | | | | 1
2
4
8 | 2
4
8
16 | | | | | 821G-C | Main Bearing Shell (9" Diam.) (Center) | | | | | | | | 3 | 4 | 5 | | 821G
822G | Main Bearing Shell (2 Pcs. 4%" long), always with " Shell (10%" long) (Not Fur. Sep.) " Shim Dowel | Y6KA821E
Y6KA822F2
#409 | | | | | | | 3
3
12 | 4
4
16 | 5
5
20 | | 820B
831J
831L
831M | Main Bearing Shell Dowel. " " Shim. " " Shim. " " Shim. " " Shim. | Y5KA820A
Y4KA831A2
Y4KA831B2
Y4KA831C2 | ::::: | | | | | | 3
18
12
18 | 4
24
16
24 | 5
30
20
30 | | 577 A
578 A
833 F
833 G
197 8
5142 | Crankshaft to Air Stop Ring Shim. Main Bearing Oil Ring (Fur. in Pairs with #1978B) " " Ring (Fur. in Pairs with #1978B) " " Hinge Pin. [Main Bearing Shell Oil Deflector. " Shell Oil Deflector. Main Bearing Shell Dowel. Main Bearing Shell Oil Deflector Screw. " Screw. | YJA577A
YJA578A
YKA833A1
Y4KA833A1
YKA1978B
YJA5142A
YKA5142A
CKB5493A
½—20 x ½" | 4
4
2 Pr.
4
1 | 8
8
8
3 Pr.
6
1 | 12
12
4 Pr.
8
1 | 4
4
2 Pr.
4
1
8
4 | 8
8
8
3 Pr.
6
1
12 | 12
12
4 Pr.
8 | 16
16
5 Pr.
10
1 | 20
20
6 Pr.
12
1 | 24
24
7 Pr
14
1 | | 3712-C | Barring Device (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 3712 | Barring Fulcrum | YJA3712B | 1 | 1 | 1 | | | | | | | | 3712
3713
3716
3717
3714
3718
419A | " | 1"x4" YKA3712D 14"x114" YKA3713B 14"x114" YKA3716A YKA3717A YKA3714A YKA3718A | 2 | 2 | 2 | 1
2
1
2
1
1
1 | 1
2
1
2
1
1
1
1 | 1
2
1
2
1
1
1 | 1
2
1
2
1
1
1
1 | 1
2
1
2
1
1
1 | 1
2
1
2
1
1
1
1 | Repair Chart No. 4 | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | 14"x | 17" | | | |-----------------------------------|---|---|--------------|---|---|--|--|--|--|--|----------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used C:
Us | | 310A-C | Outboard Bearing (Complete) | | | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | | 310A | Outboard Bearing Body, always with (5x20). "Body, always with (6x20). Bearing Body Pipe Plug Drain Pipe Plug | YKA310B
Y6KA310A
1" C't's'k.
34"
1"x734"
1"x84" | | 1
1
2
4 | 1
1
2
4 | 1
1
2
4 | 1
1
2
4 | 1
1
2
4 | 2
4
8 | 2
2
4
8 | | | 311B
314A
314B
317A | Bearing Body Cap (Not Furnished Separately) Cap (Not Furnished Separately) Shim. Shim. Bearing Body Cap Shim Dowel. Bearing Oil Well Cover. Bearing Oil Well Cover Hinge Pin. | 1"
C.P.
YKA311B
Y6KA311A
YKA314A
YKA314B
#413
YKA317A
#457 | | 12
8
4
1
1 | 12
8
4
1
1 | 12
8
4
1
1 | 12
8
4
1
1 | 12
8
4
1 | 24
16
8
2 | 8
2
24
16
8
2 | 2 | | 333G
978
333A
978 | Oil Ring Half, always with
Hinge Pin
Oil Ring Half, always with
Hinge Pin | YE833B2
YF1978A
YHA833A
YF1978A | | 4
4
 | 4
4
 | 4
4
 | 4
4
 | 4
4
 | 4
4
 | 4
4 | | | 825A
989
990
315A
345 | Gauge Glass Plug. " a " Gasket " Pipe Plug. Horizontal Adjusting Set Screw. Vertical Adjusting Set Screw. Horizontal Adjusting Set Screw. Horizontal Adjusting Sersew Jam Nut. Vertical Adjusting Screw Jam Nut. Vertical Adjusting Screw Jam Nut. Bearing Oil Baffle. Bearing Oil Baffle. Bearing Oil Baffle. Oil Throw Ring. " a " Ring. Oil Throw Ring. " " Felt. " Felt. | YE825
YK989
YK990
½",x3",
½",x2",
½",x2",
½",
YKA315A
¾",x34",
YKA2345A
Y6KA2345A
Y6KA2345A
½"x18", | | 1
1
2
1
4
2
4
2
2
4
2
2
2 | 1
1
2
1
4
2
4
2
2
4
2
2
2 | 1
1
2
1
4
2
4
2
2
4
2
2 | 1
1
2
1
4
2
4
2
2
4
2
2 | 1
1
2
1
4
2
4
2
2
4
2
2 | 2
4
2
8
4
8
4
4
 | 2
4
2
8
4
8
4
4
8
4 | | | 319A
361
361A
361B | Bearing Sole Plate. " Vertical Adjusting Shim. " Shim. " Sole Plate Cap Screw Washer. " " " Sole Plate Cap Screw Lock-washer. | YKA319A
YKA1861A2
YKA1861B1
YKA1861C1
YKA2346A
1*x3½* | | | 1
4
2
2
4
4
4 | 1
4
2
2
4
4
4 | 1
4
2
2
4
4
4 | 1
4
2
2
4
4
4 | 2
8
4
4
8
8
8 | 2
8
4
4
8
8
8 | | | 780
460A
365
366 | Bearing Pedestal. " Shim Extension Shaft (When ordering specify Engine Serial Number) " Thrust Collar " Collar " Setscrew. | DC155B
DC158A
CC365A
CC366A
34" x 1" | | 1 | i | 1 | 1
 | 1
 | 2
4
1
2
4 | 2
1
2
4 | | # List Division No. 4. Outboard Bearing and Pulleys (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | • | | | 14" | k17" | | | |------------------|--|--|--------------|--------------|-------------------|--------------|--------------|-------------------|--------------|-------------------|------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | Cyl
Use | | 172-C | Belt Pulley (Complete) | | 1 | | | 1 | 1 | | | 1 | | | 172
404 | Belt Pulley 48"x 9", always with. "Pulley 60"x11", always with. "Pulley 60"x17", always with. "Pulley 60"x42", always with. Belt Pulley Hub Bolt. "Bolt." Bolt. | YJ172
YK172
Y2K172
Y6K172
YK404
Y6K404A | 1

2 | | | 1
2 | 1
2 | | | 1 2 | | | | Belt Pulley Hub Bolt Nut. " " Key. " " Key. " " Key. | 1½"C.P.
1"x¾"x9"
1¼"x¾"x17"
1½"x1"x12" | 4
1
 | 4 | 4 | 4 | 1 | 4 | 4 | 2 | 4 | | 172A-C | Belt Pulley (Complete) | | | 1 | 1 | | | 1 | 1 | | 1 | | 172A
404 | Belt Pulley 48"x15", always with. "Pulley 54"x19", always with. "Pulley 60"x26", always with. "Pulley 60"x34", always with. "Pulley 60"x50", always with. Belt Pulley Hub Bolt. | YK172T
1C4718
Y4K172M
Y4K172B
Y6K172F
YK404
Y6K404A | | 1

2 | 1

2 | | | 1
2 | 1
2 | | 1 2 | | | Belt Pulley Hub Bolt Nut. Belt Pulley Key. " Key. " Key. " Key. " Key. | 1½" C.P.
1¼"x¾"x11"
1¼"x¾"x17"
1¼"x¾"x17"
1½"x34"x9"
1½"x1"x12" | | 1000 | 1 | 1
 | | 2 | 2 | | 4 | # List Division No. 5. Cylinder Repair Chart No. 5 | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | • | | | 14"1 | 17" | | | |---------------------|--|---|--|------------------------------|---|--|---|---|---|--|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | 1
Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | Cyl
Use | | 1F-C | Cylinder (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | 1 F 5919 850 | Cylinder, always with | YJA1E
YKA1H
1½"x11½"
1½"x12½"
½"x2¾"
2"
2"
3"
3"
YKA5919B
CFD850A
½"x½"x4" | 1
8
8
2
1
1
1
2
2
2
2
2 | 16
16
2
2
2
2 | 24
24
6
3
3
3
6
6
6
6
6 | 1
10
8
2
1
1
1
2
2
2
2 | 2
20
16
4
2
2
2
4
4
4
4 | 30
24
6
3
3
6
6
6
6 | 4
40
32
8
4
4
8
8
8
8
8 | 50
40
10
5
5
10
10
10
10 | 60
48
12
6
6
12
12
12
12 | | 5G-C | Piston (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | 198B
5545 | Upper Base to Cylinder Gasket | YJA198B
YKA198B
CKB5545A | <u>.</u> | 2 | 36 | 1 2 | 2 | 3 6 | 4 8 | 5
10 | 6 12 | #### List Division No. 6. Piston and Connecting Rod 12"x15" 14"x17" Before Ordering Repair Parts Read the Instructions on Page 33. Repair Number Symbol Cyl. Used or Size NAME OF PART 5G-C Piston (Complete)..... YJA5P YKA5W YKA349A 5G 5G YKA349A 3/8"x 7/8" #15x24" YK6 YK4 YK178A1 CJB8C CKC8F YJA8S YKA8U 7073E " " Screw... " " Spring... Piston Ring (4 Bottom Grooves). " " (4 Bottom Grooves). " " (2 Top Grooves). " " (2 Top Grooves). 8K 8K 8M 8M Ring, Oil Regulating..... Ring, Oil Regulating..... i 7D-C Piston Pin Complete..... 7D-C Piston Pin (Complete)..... YJA7D2 YKA7K2 YJA839A YKA839B YJA836C1 YKA836H1 YJA838A YKA838A YKA838A 7D 7D Piston Pin Always with... " Pin | " Oil Scraper Pipe Guide... " Guide... " Guide... " Guide... " " Scraper, Large Allways with " " " Scraper, Large | Oil Scraper Pipe, Not Furnished Separately... " Pipe, Not Furnished Separately... " Cowel. " Dowel. " Dowel." 839B 839B i 836E 836E i Piston Pin Oil Scraper, Small Always with. " " Scraper, Small | Oil Scraper Pipe, Not Furnished Separately. " Pipe, Not Furnished Separately. " Dowel. " Dowel. YJA836D1 YKA836J1 YJA838A YKA838A YK840 YK837A YKA837A 836D i 1 2 " "Spring. Spring. Spring. Note: It is recommended that 7038-C set of needle bearings always be ordered and furnished with 7D or 7D-C. Note: Separate needles should be furnished only to replace a few nearly new needles that have been lost. When needles are damaged or worn a full set should be furnished and the piston pin carefully inspected Needle Bearings (Set of 231 needles) 7½ "x1¾"... Bearings (Separate Needles) 231 Per Cylinder.... 7038-C 7038 16FM34SB1 7038A-C Needle Bearing (Set of 240 Needles) 1/4x13/4..... Bearing (Separate Needles) 240 Per Cylinder. 7038A 16FM34SB9 # List Division No. 6. Piston and Connecting Rod (Continued) | D . | Before Ordering Repair Parts Read the Instructions | Symbol | - | 12°x15 | | | 1 0 | 14"x | 17" | 1 - | | |---
---|--|--------------|--|-------------------------|--------------------------------------|---|--|--|--|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cy
Use | | 4721
4721
4720 | Piston Pin Needle Retainer | YJA4721B2
YKA4721B1
YJA4720B3 | 2 | 44 | 6 | 2 | 4 | 6 | 8 | 10 | 12 | | 4720 | " " Ring | YKA4720B4 | | | | 2 | 4 | 6 | 8 | 10 | 12 | | 18 E -C | Connecting Rod (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | | | | | 18E
18E
17D
17D
20D-C
20F-C
32B
32B
34A
34A
3375
1193D
1193E | Connecting Rod | YJA18E
YKA18K
YJA17E1
YKA17H2
YJA32A
YKA32A
YJ34
YK34A
YJA3375A
YJA1193D1
YKA1193D1
YJA1193E1 | 1 1 2 2 As R | 2 2 4 4 e quir | 3
3
6
6 | 1
1
1
2
2
2 | 2
2
2
4
4
4 | 3
3
6
6
6 | | | | | 1193E
1193F
1193F | " " Shim .062" Thick " " Shim .015" Thick Shim .015" Thick Shim .015" Thick | YKA1193E1
YJA1193F1
YKA1193F1 | | | | As R | equir | ed. | | | | | 18F-C | Connecting Rod (Complete) | | | | | | | | 4 | 5 | | | 18F
17D
20G-C
32D
34B
⊖
1193G
1193H
1193J | Connecting Rod. " " Piston Pin Bushing. " " Bearing Complete. " " Bolt. " " Nut. " " " Cotter. 11FM2A Bearing (Rod Shim .031" Thick " " Shim .062" Thick " " Shim .062" Thick | CKC32A1 | | | | | | | 4
4
4
16
16
16
16
As R | 5
5
20
20
20
20 | 2.2.2.2.2.ed | | 20D-C | Connecting Rod Bearing (Complete) (Babbitt) | | 1 | 2 | 3 | 1 | 2 | 3 | | | | | 20D
20D
181
21B
21B
44D
44D
44E
1405
1406
1406
1406
1407
2075D | Connecting Rod Cap Always with | TETE A OO T1 | 1 | 2

8
2

16

4
2

2 | 3
24
24
3
6 | 1
4
1
8
8
2
1
1 | 2
8
2
16
16
4
2
2
4 | 3
12
3
24
24
6
3
3
6 | | | | | 20E-C | Connecting Rod Bearing (Complete) (Babbitt) | | | | | | | | 4 | 5 | | | 20E
181A
21D
44G
44H
44J
1405
1406
1407
2075E
4103 | Connecting Rod Cap. " " to Box Dowel. " " Box, Not Furnished Separately. " " to Cap Shim .006" Thick. " " " Shim .032" Thick. " " " " Shim .064" Thick. Cap Wick Support Spring. " Wick. " " Support. Rod to Box Dowel. Cap to Box Dowel. Cap to Box Dowel. " " " " " " " " " " " " " " " " " " " | Y K1405A
YK1406A
YK1407A2
CKC6269A
C3FC4103A1 | | | | | | | 4
16
4
40
8
8
8
4
4
8
8
8
8
8 | 5
20
5
50
10
10
10
5
5
10
10
10 | 66 | | 20F-C
20G-C | Connecting Rod Bearing (Complete) 8" (Aluminum).
Connecting Rod Bearing (Complete) 9" (Aluminum). | | | | | 1 | 2 | 3 | 4 | 5 | 1. | | 20F
20G
181
181
181A
21E
21F
2075E
181B
A19
B19
4103
\ominus
44D
44G
44G
44H
44J
1406 | Bearing Cap, always with Bearing Cap, always with Cap to Box Dowel Cap to Box Dowel Bearing Box, always with Box to Rod Dowel Box to Rod Dowel Box to Rod Dowel Box to Aluminum Bearing Dowel Aluminum Bearing Shell Aluminum Bearing Shell Cap to Box Bolt Bolt Nut. Bolt Nut. Bolt Cotter Box to Cap Shim (.025") Box to Cap Shim (.006") Box to Cap Shim (.032") Box to Cap Shim (.064") Cap Wick Support Spring Cap Wick | YKA20L
YKA20K1
YKA20K1
YKA21N
YKA21N
YKA21P
YJA2075D
CKC6269A
DEA181A
YKA19B
YKA19C
YKA35A
½"
"%" x 1"
YKA44F
YKA44G
Y4KA44A
Y4KA44A
Y4KA44A
Y4KA44C
YK1406A | | | | 1 1 2 2 1 1 1 1 | 2
8
2
4

2
2

16
16
16

4
2
2 | 3
12
3
6
3
3
3
3
 | 4
16
4
8
4
8
8
8
8
8 | 5
20
5
10
5
10
10
10
10
10
10
10
10
10
5 | 124
60
125
125
125
126
126
127
127
127
127
127
127
127
127
127
127 | # List Division No. 7. Cylinder Head and Valves | Down | Before Ordering Repair Parts Read the Instructions | Symbol | 1 | 12"x15 | | | | 14"x | | | 1 | |--------------------------------|--|--|------------------|------------------------|------------------------|------------------|------------------------|------------------------|--------------------------|------------------------|----------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | C3
Use | | 3L-C | Cylinder Head (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | (| | 3L | Cylinder Head, always with | YJA3R
YKA3W1 | 1
2 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | | " Water Overflow Stud | YJA6001A
½"x2"
¾"x3¾"
¾"x-23¼" | 2 2 | 4 4 | 6
6
6 | 2 | 4 | 6 | 8 | 10 | 1 | | | Cylinder Head Air Check Valve Stud. " " Stud. Cylinder Head Air Check Valve Stud. " " Pipe Plug. | 34 "x3 34"
58"x2 1/2"
58"x2 34" | 3 | 6 | 9 | 2 2 | 4 | 6 | 8 | 10 | 1 | | 5565
5566
5567A | Relief Valve Adapter Tube. " " Gland " " Packing. | YKA5565H
YKA5566A
ND1772B | 1 1 2 | 2
2
4 | 3
3
6 | 1
1
1
2 | 2
2
2
4 | 3
3
6 | 4 4 8 | 5
5
10 | 1 | | 5565A
5566
5567A
3093 | Indicator Adapter Tube Indicator Adapter Tube Gland " Packing Indicator Adapter Tube Plug. | YLA5565E
YKA5566A
ND1772B
YLA3093A1 | 1
1
2
1 | 2 4 2 | 3
6
3 | 1
1
2
1 | 2
2
4
2 | 3
6
3 | 4
4
8
4 | 5
5
10
5 | 1 | | 5876
5877 | Indicator Adapter Tube Plug | CKB5876A
YKA5877A | 1 | 2 2 | 3 3 | 1 1 | 2 2 | 3 | 4 4 | 5 5 | | | 33E
632A | Cylinder Head Gasket (was Repair No. 33C)(Cylinder Head Counterbore Gasket | YKA33M
YJA632F
YKA632F | 8
1 | 16
2 | 24
3 | 10 | 20 | 30 | 40 | 50 | 60 | | 362E-C | Relief Valve (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | 362E
363B
364B | Relief Valve Body " " Cap " Jam Nut | YF362
YF363
YF364B
546", C. P. | 1
1
1 | 2
2
2
2 | 3 3 3 3 | 1
1
1
1 | 2
2
2
2 | 3 3 3 3 | 4 4 4 4 | 5
5
5
5 | | | oran a | " Lockwasher | 2/16 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | 854B-C | Air Start Check Valve Cage (Complete) | | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | 854B
2113 | Air Start Check Valve Cage, always with. " Cage, always with. " Bushing. | YJA854A
YKA854C
YKA2113A1 |
1 | 1
1 | 2 2 | 1
1 | 1 | 2
2 | 2 2 | 2 2 | | | 853B
856A
2114
1550D | Air Start Check Valve with Nut and Cotter. " " " " " " Spring. " " " " " Cap. " " " Cage Plug. | YJA853A1
YKA856A
YKA2114A
YKA1550C | 1
1
1
1 | 1
1
1 | 2
2
2
2 | 1
1
1 | 1
1
1
1 | 2
2
2
2 | 2
2
2
2 | 2
2
2
2 | | | 1549
858D | Air Start Valve Cage Gasket | YKA1549A
CFE5877A | 1 1 | 2 2 | 3 3 | 1 1 | 2 2 | 3 3 | 4 4 | 5 5 | | |
248B | {Air Start Check Valve Chamber Plug. | Y2JA248B
Y2KA248C | | 1 | | | 1 | 1 | 2 | 3 | | | 225 E -C | Exhaust Manifold (Complete) — C. I. Water Cooled | | | 1 | 1 | | | 1 | 1 | 1 | | | 225E | Exhaust Manifold—2 Cyl. Exhaust Manifold—3 Cyl. (Exhaust Manifold—2 Cyl. Sec. (Exhaust Manifold—3 Cyl. Sec. (Exhaust Manifold Pipe Plug. (Exhaust Manifold Pipe Plug. (Exhaust Manifold Pipe Plug. | Y2JA225B4
Y3JA225B4
Y2KA225F6
Y3KA225C7 | | 1

5
 | 1 66 | | 1
2
2
8
2 | 1
1
3
2
12 | 2
4
4
16 | 1
1
5
4
20 | 24 | | 1518
1519
281
A76 | Side Handhole Cover Side Handhole Cover Gasket Side Handhole Cover Capscrew Jacket Handhole Cover Jacket Handhole Cover Jacket Handhole Cover Gasket | CKB1518C
CKB1519A
5%" x 1½"
CKB281A
CKB76A | | 2
2
12
4
4 | 3
3
18
6
6 | | 2
2
12
4
4 | 3
3
18
8
8 | 4
4
24
8
8 | 5
30
12
12 | 36
16
16 | | 1568
1569 \ominus | Head Flange 20FM20C Head Flange Gasket 15FM34A Head Flange Cap Screw 11FM7A | 12" x 114"
18"
18"
1.18" x 4" | | 24 | 36 | | 24
1
1
16 | 48
1
1
16 | 48
1
1
16 | 72
1
1
16 | 96 | | 1568
1569 | Head Flange Nut | 11'8"
16"
16" | | 1 1 | 1
1 | | 16 | 16 | 16 | 16 | 10 | #### List Division No. 8. Horizontal Exhaust Manifolds Repair Chart No. 8 | D | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | | x17" | | | |--|---|---|--------------|----------------------------|-------------------------------|--------------|---------------------------|--------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | Cyl.
Used | | (225E-C
Con't) \in | " " Capscrew | 1" x 3¾" | | 16
16 | 16
16 | | | | | | | | 225F | Exhaust Manifold—Welded Type—Water Cooled (See Page Exhaust Manifold—Welded Type—Water Cooled | Y2JA225F
Y2KA225J
Y3JA225E | | 1 | ····i | | i | | | | | | 225G | Exhaust Manifold—Welded Type—Air Cooled " " —Welded Type—Air Cooled " " —Welded Type—Air Cooled | Y2KA225H
Y2JA225E
Y3JA225D | | 1 | 1 | | 1 | | | | | | 416
618
77A
263
4375 | Exhaust Nozzle to Exhaust Manifold Machine Bolt Nut. Cylinder to Exhaust Cap Screw. Cylinder to Exhaust Capscrew Washer (Not Shown). | YG416
YK618
YJA77A
YKA77A
¾" x 3"
YF263
¾" x 2"
YKA4375C | | 2
2
16
.16
.16 | 3

24
24
24
24 | | 2
16
16
16
16 | 3
24
24 | 4
32
32 | 5
40
40 | 6
48
48 | | 1569 E E E E E E E E E E E E E E E E E E E | Cylinder to Exhaust Cap Screw Washer | 34" 18" 1½" x 3¾" 1½" 18" 16" 1" x 3" 1" 1½" x 3½" | | 16

1
16
16 | 1
16
16 | | 16 16 | 1
16
16 | 1
16
16
1
1
16
16 | 1
16
16
1
1
16
16 | 1
16
16
1
1
16
16 | | A1565 | Manifold Outlet Reducing Flange—10" | YJA1565C
15FM34A
78" x 2½"
20FM20A
19FM5A | | 1
1
12
1
As R | 1
1
12
1 | 0 | | | | | | | B1565 | Manifold Outlet Reducing Flange—12" | YKA1565F
15FM34A
7'8" x 2 1/4"
20FM20A
19FM5A | | | | | 1
1
12
1
As R | 1
1
12
1
eq. | 1
1
12
1 | 1
1
12
1 | 1
1
12
1 | | B1565 | Manifold Outlet Reducing Flange—12". " " " Gasket—12". " " Capscrew. 11FM7A " " Pipe Flange—12". " " Pipe—12" O.D. (Specify Length). | YJA1565A
15FM34A
½" x 2¼"
20FM20A
19FM5A | | 1
12
1
As R | 1
12
1
eq. | | | | | | | | C1565 | Manifold Outlet Reducing Flange—14". " " " Gasket—14". " " Capscrew. 11FM7A. " " Pipe Flange—14". " " Pipe—14" O.D. (Specify Length). | YKA1565-G
15FM34A
1" x 2½"
20FM20A
19FM5A | | | | | 1
1
12
1
As R | 1
1
12
1
eq. | 1
1
12
1 | 1
1
12
1 | 1
1
12
1 | | C1565 | Manifold Outlet Reducing Flange—14". " " Gasket—14". " " Capscrew. 11FM7A " Pipe Flange—14". " Pipe—14" O.D. (Specify Length). | YJA1565B
15FM34A
1" x 2½"
20FM20A
19FM5A | | 1
12
12
1
As R | 1
12
1
eq. | | | | | | | | D1565 | Manifold Outlet Reducing Flange—16". " " " Gasket—16". " " Capscrew. 11FM7A " " Pipe Flange—16" " " Pipe—16" O.D. (Specify Length). | YKA1565H
15FM34A
1" x 234"
20FM20A
19FM5A | | | | | 1
16
1
As R | 1
16
1
eq. | 1
1
16
1 | 1
1
16
1 | 1
1
16
1 | | A2192
B2192
C2192
D2192
E2192
F2192
G2192
H2192 | Water Outlet Pipe—R.H. (Used with 225F), always with " | YJA2192C
YJA2192D
YKA2192D
YKA2192D
YKA2192D
YKA2192A
YKA2192A
YJA2192A
YJA2192B
½ P. x ½ T. | | 1
1

1
1
4 | 1
1

1
1
4 | | 1
1
1
1
4 | 1 1 4 | 2 2 8 | 2 2 2 | 2 2 8 | | 1581Q
1581R | Water Overflow Manifold | Y2KA1581J
Y3KA1581H
Y2JA1581P
Y3JA1581K | | i | 1 | | - | ···i | 2 | 1 1 | 2 | Repair Chart No. 8A | | Before Ordering Repair Parts Read the Instructions | Symbol | - 19 | 12 " x15 | • | | | 14"x | 17" | | | |--|---|---|-----------------------------------|--|-----------------------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | Cy
Use | | 225A-C | Exhaust Pot (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 225A | Exhaust Pot, always with. " Pot, always with. " Pot, always with. " Pot, always with. " Pot, always with. | YJA225A
Y2JA225A1
Y3JA225A
YKA225A
Y3KA225A1 | 1 | 1 | 1 | 1 | | i | | 1 | | | 225E
668 | Exhaust Pot, always with. "Stuffing Box Stud. ""Nut. ""Pipe Plug. | Y2KA225A1 5/6"x4½" Y2J668 | i | 8
8
1 | 12
12
12 | ::::::
i | 1
8
8
1 | 12
12
12 | 16
16
2 | 16
16
3 | 24
24
24
3 | | | " Plug. | 2" | 1 | 1 | 1 | î | 1 | i | 2 | 3 | 3 | | 616
615
263
617
281
282 | Exhaust Pot Bottom Plate " " Cover (Top) " " Bolt " " Nut " " Gasket Top and Bottom " " Hand Hole Cover Hand Hole Cover Clamp (All in Bracket) " " Set Screw | YK616A1
Y3K615
¾"x3¼"
YH263
YK617
YF281
YF282
%"x2¼" | 1
1
24
24
2
1
1 | 1
1
24
24
2
1
1
1 | 1
1
24
24
2
1
1 | 1
1
24
24
2
1
1 | 1
1
24
24
2
1
1
1 | 1
1
24
24
2
1
1 | 2
2
48
48
4
2
2 | 3
3
72
72
6
3
3 | 3
72
72
6
3
3 | | 76 | " " " Gasket | YF76
YG416 | 1 | 1 | 1 | î | î | î | 2 | 3 | | | 116
229
318 | Exhaust Pot Flange Gasket " Flange " Flange Gasket " " Mach. Bolt | 423
YK618
%/"x3" | 16 | | | 2
2
16 | | | ::::: | 2 2 | | | 263
666 | " " " Bolt." " " " Nut Stuffing Box Gland." " Gland." Asbestos Wicking. | 34"x314"
YF263
YJA666A
Y2K666
1/2# Ball | 16 | 2 | 3 | 16 | 2 3 | 3 5 | 4 6 | 16
16
4
6 | 6 | | 225D-C | Exhaust Pipe (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | - | | 225D | Exhaust Pipe, always with " Pipe, always with " " Plug. " " Plug. Hand Hole Cover Stud. | YJA225C
YKA225E
½"
1"
%"x2¼" | 1
1
1
1
4 | 2
2
2
2
8 | 3
3
3
12 | 1
1
1
4 | 2
2
2
8 | 3
3
3
12 | 4
4
4
16 | 5
5
5
20 | 6 6 24 | | 281A | Hand Hole Cover " Pipe Plug. | YKA281B | 1 1 | 2 2 | 3 3 | 1 | 2 2 | 3 | 4 4 | 5 5 | 1 | | 76A
'80 | " " Gasket " " Stud Nut (Conduit Thimble with Stud | ÝKA76B
5%" C. P.
YJA2780A1 | 1 4 1 | 8 2 | 3
12
3 | 1 4 | 8 | 3
12 | 16
16 | 5
20 | 2 | | 66 | Conduit Thimble Gland. | YKA2780B1
YJA666 | ···i·· | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 1 | | 368 | " " Gland. Asbestos Wicking. 15FM8A1 Thimble Gland Stud Nut | Y2K666
½# Ball
Y2J668
5/"x4" | 2
4
4 | 3
8
8 | 3
12
12 | 1
2
4
4 | 2
3
8
8 | 3
5
12
12 | 6
16
16 | 5
8
20
20 | 24 | List Division No. 8. Exhaust Pot and Pipes (Continued) | | Before Ordering Repair Parts Read the Instructions | | | 12"x15 | | | | 14" | x17" | | | |-------------------|--|---|------------------|------------------|-------------------|------------------|------------------|--|---------------|----------------------|----------------------| | Repair
Number | on Page 33. NAME OF PART | Symbol
or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Use | | 77A | Cylinder Exhaust Pipe Gasket. " Gasket. " Nozzle Gasket. "
Gasket. | YJA77A
YKA77A
YJA77A
YKA77A | 1
1 | 2
2 | 3 | 1 | 2 2 | 3 | 4 | 5 | 6 | | 75A-C | Exhaust Nozzle (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | 75A | Exhaust Nozzle, always with. "Nozzle, always with. "Pipe Plug | YJA75D
YKA75A
½" | 1
2 | 24 | 3 6 | 1
2 | 2 4 | 3 6 | 4
8 | 5
10 | 6
12 | | 281
282
76 | Exhaust Nozzle Hand Hole Cover | YF281
YF282
⁵ / ₈ "x2 ¹ / ₄ "
YF76 | 2
2
2
2 | 4
4
4
4 | 6
6
6 | 2
2
2
2 | 4
4
4
4 | 6
6
6
6 | 8
8
8 | 10
10
10
10 | 12
12
12
12 | | 665-C | Exhaust Piping (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 665
670 | Exhaust Elbow (Single Flange). " Elbow (Single Flange). " Elbow (Double Flange). " Elbow (Double Flange). | Y2JA665A
Y2K665
Y3K670
Y3JA670A | | 2 | | ::::: | 2 | ······································ | 4 | 4 | 6 | | 416
618
671 | " " Gasket. (Exhaust Pipe. " " Pipe. | YG416
YK618
YJ671A
Y3K671 |
i | 2 | 5 | | 2 | 5 | 4 | 4 | 6 | | 611 | " Pipe. Exhaust Nipple. " Nipple. | Y3JA671A
YK611
YK611C | | | 3 | 1 | | | | , | | | 263 | " Pipe Flange Mach. Bolt. " " Bolt. " " " Bolt. " " " Nut. " " Nipple Thread Protector. | %4"x3"
%4"x31½"
YF263
8" | | 16
16 | 40 | | 16
16 | 40
40 | 32
32 | 32
32
2 | 48 | List Division No. 9. Governor Rocker and Push Rods # List Division No. 9. Governor Rocker and Push Rods (Continued) | on Page 33. NAME OF PART Governor Cam Rocker (Complete). Note:—6 Cyl. Engine. Used on Cyl. No. 3 and No. 4. 5 " Engine. " Cyl. No. 1 and No. 4. 4 " Engine. " Cyl. No. 1 and No. 4. 3 " Engine. " Cyl. No. 1. 2 " Engine. " Cyl. No. 1. 1 " Engine. " Cyl. No. 1 and No. 2. 1 " Engine. " Cyl. No. 1. Governor Cam Rocker, always with. " Rocker, always with. Governor Cam Roller Pin. " Roller " Dowel. Governor Cam Rocker (Complete). Note:—6 Cyl. Engine. Used on Cyl. No. 1 and No. 6. | or
Size
YKA656A
Y4KA656A
YKA658A
YKA2333A
YKA2331A
YKA2332A
YKA2332A | 1 Cyl. Used 1 | 2 Cyl. Used 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1
1
1 | 1 Cyl. Used 1 | Cyl. Used 2 | Cyl.
Used | Cyl. Used | Cyl.
Used
1 | Cyl
Use | |---|--|--|--|---
---|--|------------------------------|--|-----------------------------|------------------------------| | Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 3 and No. 4. | Y4KA656A
YKA658A
YKA2333A
YKA2331A
YKA2332A | 1 1 1 1 | 2 2 2 | 1 | 1 | | | | | 2 | | Note:—6 Cyl. Engine. Used on Cyl. No. 3 and No. 4. 5 | Y4KA656A
YKA658A
YKA2333A
YKA2331A
YKA2332A | 1
1
1 | 2 2 | 1 | | | | | | | | " Rocker, always with Governor Cam Rocker Mushroom " Bushing. Governor Cam Roller Pin. " Roller " Dowel. Governor Cam Rocker (Complete). | Y4KA656A
YKA658A
YKA2333A
YKA2331A
YKA2332A | 1
1 | 2 | | 1 | 2 | 1 | | 1 | | | Governor Cam Roller Pin " Roller Dowel. Governor Cam Rocker (Complete) Note: 6 Cell Engine Head on Cell No. 1 and No. 6 | YKA2332A | | 1 | î | 1 1 | 2 2 | 1 1 | 2
2
2
2 | 1 1 1 | 2 2 2 | | Notes 6 Cyl Frainc Hard on Cyl No. 1 and No. 6 | | 1 2 | 2
2
4 | 1
1
2 | 1
1
2 | 2
2
4 | 1
1
2 | 2
2
4 | 1
1
2 | 2
2
4 | | Notes 6 Cyl Frainc Hard on Cyl No. 1 and No. 6 | | | | 1 | | | 1 | 2 | 1 | 2 | | See of Cyl. No. 1. | | | | - | | | | | | | | Governor Cam Rocker, always with | Y3KA656A
Y4KA656B | | | 1 | | | 1 | 2 | | Page 1 | | " Rocker, always with | Y6KA656A | | | | | | | | | 2 | | Governor Cam Rocker Mushroom. | YKA658A | | | 1 | | 1 | 1 | 2 | 1 | 2 2 | | 네트리아 용도 하는 내용도 가득한 역사들이 어떻게 했다. 한 경험을 하는 사람이 되었다면 하는 이번에 되었다면 하다. | | | | | | | 1 | 1 2 3 | | 2 | | " " Roller | YKA2332A | | | 1 2 | | 100000000000000000000000000000000000000 | 1 2 | 2 4 | 1 2 | 2 4 | | | | | | 1 | | | 1 | | 1 | | | | | | | - | | | - | | | | | 3 "Engine. " "Cyl. No. 3. | VSKASSSR | | | 1 | | | 1 | | | | | " Rocker, always with | Y5KA656D | | | | | | | | 1 | | | " " Bushing | YKA2333A | | | 1 | | | 1 | | | | | | | ::::: | | i | ::::: | | i | | 1 | | | " Roller | YKA2332A
YKA2324A | | | 1 2 | | | 1 2 | | 2 | | | Governor Cam Rocker (Complete) | | | | | | | | | | 1 | | Note: -6 Cyl. Engine. Used on Cyl. No. 5. | | | | | | | | | | | | Governor Cam Rocker, always with | Y6KA656B2
YKA658A
Y6KA2333A | | | | | | | | | 1 1 | | Governor Cam Roller Pin | YKA2331A
YKA2332A
YKA2324A | | | | | | | | | 1 1 2 | | | | | | | | | | | 1 | 1 | | Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5 " Engine. " " Cyl. No. 3. | | | | | | | | | | | | Governor Cam Rocker, always with | Y5KA656C | | | | | | | | 1 | 1. | | Governor Cam Rocker Mushroom | YKA658A | | | | | | | | 1 | | | | | | | | | | | | | 1 2 | | " Roller | YKA2332A | | | | ::::: | | | | 1 | | | | | | | | | | | | | - | | | | | | | | | | | 1 | | | Governor Cam Rocker, always with | Y5KA656B | | | | | | | | 1 | | | " Bushing | YKA2333A | | | | | | | | i | | | Governor Cam Roller Pin | YKA2331A | | | | | | | | 1 | | | " Roller " Rocker Dowel | YKA2332A
YKA2324A | | | ::::: | | | | | 2 | | | Inj. Pump Suct. Valve Lower Push Rod (95%) | YKA625C | 1 | 1 | | 1 | 1 | | | 1 | 1 | | " Rod (12 ¹ %6') | YKA625D | | i | 1 | | 1 | 1 | | | | | Inj. Pump Suct. Valve Lower Push Rod (1215/6") | Y3KA625C | | | i | | | i | 1 | | | | (Ini Pump Suct. Valve Lower Push Rod (135%*) | Y6KA625B | | | | | | | 2 | | . 3 | |) " " " Rod (6") | Y3KA625D | | | 1 | | | 1 | | 1 | 1 | | " " Rod (5%"). | Y5KA625B | | | | | | | | 1 | | | | Y5KA625C | | | | | | | | 1 | | | Gov. Cam Rocker Aux. Spring | YKA2336A
Y5KA2336A | 1 | 2 | 3 | 1 | 2 | 3 | 4 | | . 4 | | | " Rocker, always with. Governor Cam Rocker Mushroom. " Bushing Governor Cam Roller Pin " Bowel. Governor Cam Rocker (All in Bracket) Note:—5 Cyl. Engine. Used on Cyl. No. 5. 3 Engine. " Cyl. No. 3. Governor Cam Rocker, always with. " Rocker, always with. " Rocker Always with. Governor Cam Rocker Mushroom. " Bushing. " Bushing " Bushing " Rocker Dowel. Governor Cam Roller Pin " Rocker Dowel. Governor Cam Rocker, always with. " " Rocker Dowel. Governor Cam Rocker, always with. " " Rocker Dowel. Governor Cam Rocker, always with. " " Rocker Dowel. Governor Cam Rocker, always with. " " Rocker Dowel. Governor Cam Rocker, always with. " Rocker Bushing. Governor Cam Rocker, always with. " Rocker Dowel. al | Governor Cam Rocker Mushroom Governor Cam Rocker (All in Bracket) Governor Cam Rocker (All in Bracket) Note:—5 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker (All in Bracket) Note:—5 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker, always with. " Roller Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker Mushroom " Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker Mushroom " Rocker (YKA2333A) " WKA2333A " " Roller (YKA2333A) " " Roller (YKA2333A) " " Rocker Dowel. (YKA2332A) " " Rocker Dowel. (YKA2333A) " " " " " " " " " " " " " " " " " " " | Governor Cam Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. " Bushing. "YKA2331A YKA2332A YKA2331A YKA2331A YKA2331A YKA2331A YKA2332A YKA2331A YKA2332A YKA2331A YKA2332A YKA2331A YKA2332A YKA2331A YKA2333A YKA2333A YKA2333A YKA2333A YKA2333A YKA2333A YKA2333A YKA2333A YKA2331A YKA2332A YKA2333A Y | Governor Cam Rocker (All in Bracket) Note:—5 Cyl. Engine. Used on Cyl. No. 5. "Bushing. "YKA2331A "Engine. "Gyl. No. 3. Governor Cam Rocker (All in Bracket) Note:—5 Cyl. Engine. Used on Cyl. No. 5. "Engine. "Gyl. No. 3. Governor Cam Rocker, always with. "YKA2332A "Bushing. "YKA2334A Governor Cam Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. "Bushing. "YKA2334A "Governor Cam Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. "Governor Cam Rocker (All in Bracket) Note:—6 Cyl. Engine. Used on Cyl. No. 5. "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker, always with. "YKA2334A "Governor Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker, always with. "YKA2334A "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 3. Governor Cam Rocker, always with. "YKA2334A "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 3. Governor Cam Rocker, always with. "YKA2334A "Rocker Dowel. "YKA2334A "Governor Cam Rocker, always with. "YKA2334A "Governor Cam Rocker, always with. "YKA2334A "Governor Cam Rocker, always with. "YKA2334A "Governor Cam Rocker (Complete) Note:—5 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—5 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—5 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. "Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. | Governor Cam Rocker Mushroom. Governor Cam Rocker Mushroom. Governor Cam Rocker Mushroom. Governor Cam Roller Pin. " Roller Dowel. " Roller Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker (All in Bracket) " Bushing. Governor Cam Rocker (All in Bracket) Interest Rocker Mushroom. Governor Cam Rocker (All in Bracket) Governor Cam Rocker (All in Bracket) 1 Note:—5 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker Mushroom. (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker, always with. " Rocker Dowel. " Rocker Dowel. " Rocker Mushroom. " Rocker Mushroom. " Rocker Dowel. " Rocker Dowel. " Rocker Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 5. Governor Cam Rocker, always with. " Rocker Dowel. " Rocker Dowel. " Rocker Dowel. " Rocker Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5 Engine. " Rocker Dowel. " Rocker Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5 Engine. " Rocker Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5
Engine. " Rocker Dowel. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5 Engine. " Rocker Dowel. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 5 Engine. " Rocker Dowel. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 6 Sengine. " Rocker Dowel. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. 6 Sengine. " Rocker Dowel. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. Governor Cam Rocker (Complete) Note:—6 Cyl. Engine. Used on Cyl. No. 2. Governor | Governor Cam Rocker Mushroom. YEKA655A 1 | Governor Cam Rocker Mushroom | Governor Cam Rocker Mushroom YKA658A 1 1 1 1 1 1 1 1 1 | Governor Cam Rocker Mushrom | Governor Cam Rocker Mushroom | ### List Division No. 10. Fuel Reservoir, Oil Pump and Oil Sump Repair Chart No. 10 | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | 14" | x17" | | | |---|---|--|---|---|---|---|---|---|---|---|---| | Repair | on Page 33. | or
Size | Cyl. | Cyl. | 3
Cyl. | Cyl. | Cyl. | 3
Cyl. | Cyi. | S
Cyl. | 6
Cy | | Number | NAME OF PART | Size | Used | | Used | Used | Used | Used | Used | Used | | | 985A-C | Fuel Reservoir (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 985A | Fuel Reservoir, always with. "Reservoir, always with. "Reservoir, always with. "Reservoir, always with. "Reservoir, always with. | YKA985A2
Y3KA985A2
Y4KA985A2
Y5KA985B1
Y6KA985A2 | 1 | 1 | `i | 1 | 1 | 1 | 1 | 1 | 1 3 | | 1199A
991A
989
990
3141 | Fuel Reservoir Starting Valve Bushing. " " Gauge Glass. " " Plug " " Gasket. Air Start Valve Plug | YKA1199A
YKA991A
YK989
YK990
Y5KA3141A | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
 | 2
1
1
1
 | 2
1
1
1
1 | 1 1 1 | | 975-C | Fuel Discharge Strainer (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2401 | Fuel Reservoir Housing Gasket | YKA2401A
Y3KA2401A
Y4KA2401A
Y5KA2401A
Y6KA2401A | 1 | 1 | i
::::: | 1 | 1 | 1
::::: | | 1 | . 1 | | 516D-AC | Fuel Supply Pump (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 516D
517E
300A
4765A
4766A
518A
90B
150
6370A | Fuel Supply Pump Body with Stud. " " " Plunger " " " Pysh Rod " " " Pipe Plug (Cored). Fuel Supply Pump Plunger Link Pin. " " Sleeve. Link. " " " Rod " " " Rod " " " " " " " " " " " " " " " " " " | YKA516C
YKA517D
YKA300B
YKA4765B
YKA4766B
½" Br.
YKA518A
YKA90C
YKA150A
YKA6370B
½"
½"x1"
CKC7612A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 111111111111111111111111111111111111111 | | 519A
520A
470 | Fuel Supply Pump Discharge Valve. | YKA519A
YKA519A
YKA520A
YKA470A
½"x23¼" | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | | 148
2112
1039 | # # " Suction Valve Plug. # # " Gasket. " " " Strainer Nipple. | YKA148A1
YKA2112A
YK1039
½"x4" | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | | | 2366 | Fuel Supply Pump Body Gasket | YKA2366A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | # List Division No. 10. Fuel Reservoir, Oil Pump and Oil Sump (Continued) | Size | Repair | Before Ordering Repair Parts Read the Instructions | Symbol | - | 12"x15 | | - | 1 0 | 14"3 | | 1 " | _ | |--|------------------------------|---|--|------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|---| | See Puel Reservoir Cover (Complete) | | on Page 33. NAME OF PART | Size | | | | | | | | | C | | Cover_always with | 986B-C | Fuel Reservoir Cover (Complete) | | - | - | - | - | | | | | - | | 1874.C Puel Reservoir Cover Gaket. 1 1 1 1 1 1 1 1 1 | 60A
2313
2362 | " " Cover, always with " " Cap" " " Handle " " Spring. " " Screw Collar " Screw Collar " " " Screw Collar " " " " " " " " " " " " " " " " " " " | Y4KA986A
YKA60A
YKA2313A
YKA2362A
YKA2270A | 1
1
1
1 | | 1874 | 187A-C | | | | | | | 19.75 | | | | | | Fusil Reservoir Cover Strainer Side, always with YKA1877A 2 2 2 2 2 2 2 2 2 | 1902 | Fuel Reservoir Cover Gasket | YKA1902A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Strainer Flange (Not Pur. Sep.) | 187A-C | Fuel Reservoir Cover and Oil Sump Strainer (Com.) | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | - | | 1864 Lubricating Oil Pump Body, always with YKA1084A3 | 187A
2271
2272
1369 | " Strainer Flange (Not Fur. Sep.) | YKA2271A
YKA2272A | 2 2 | | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | | | 1985A | 1084A-C | Lubricating Oil Pump Body (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | | Collar | 1084A
1085A | Lubricating Oil Pump Body, always with. Plunger | YKA1084A3
YKA1085A | | | | | | | | 1 2 | | | Valve Ball | 1093A
2111 | Lubricating Oil Pump Plunger Pin Collar | YKA1093A
YKA2111A | | | 1 2 | | | | | | | | 1097A Lubricating Oil Pump Body Gasket | 2110
1796
2369
3619 | " " Valve Ball. " " Valve Ball. " " Plunger Pin Plug. " " Discharge Conn. Gasket. " " Set Screw. | 5%" Diam.
3%" Diam.
YKA1796A
YKA2369A
YKA3619A | 2 | 2
2
2
2
2 | 2 2 2 2 2 | 2
2
2
2
2 | 2
2
2
2
2 | 2
2
2
2
2 | | 2
2
2
2
2 | | | 2 2 2 2 2 2 2 2 2 2 | 2582-C | Lubricating Oil Pump Strainer (Complete) | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | _ | | Lubricating Oil Pump Rod (Complete) | 1097A | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | _ | | 1088 " " " Side (Not Fur. Sep.) YKA1088A 2 2 2 2 2 2 2 2 2 | 2582-C | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Lubricating Oil Pump Rod, always with YJA1036B | 2582
1088
1088 A | Lubricating Oil Pump Strainer Plug, always with | YKA1088A | | 2 | 2 | 2 | 2 | 2 | | | | | Lubricating Oil Pump Rod End | 1086B-AC | Lubricating Oil Pump Rod (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | | Lubricating Oil Pump Rod End | 1086B | Lubricating Oil Pump Rod, always with " " Rod, always with " " " Nut." | YKA1086B | | | | | | 1 | | | | | 1 | 2314
6599 | Lubricating Oil Pump Rod
End | YKA2314A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Lubricating Oil Sump, always with. YKA1081E 1 1 1 1 1 1 1 1 1 | 2109
2792A | Lubricating Oil Pump Body Cover (Half). a a Cover (Half). Lubricating Oil Pump Body Cover Gasket. a Gasket. | YKA2109A
YJA2792A | 2 | | | e-e-la | | | | | | | 1082D | 1081D-C | Lubricating Oil Sump (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Company Comp | 1081D | Lubricating Oil Sump, always with | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | ### ### ### ### ### ### ### ### ### ## | 1082D
6777
193B | Lubricating Oil Sump. Cover Pin. "" Spring. "" Cotter. | Y4KA1082D
YKA6777A
YKA193A | 1
1
1 | 1
1
1 | 1
1
1 | 1
1
1 | 1
1
1 | 1
1
1 | 1 | 1 | | | Lubricating Oil Sump Overflow Pipe YKA2316A 1 | 4131 | " " " Handle Stud. " Handle. Lubricating Oil Sump. Pump Stud. " " Stud. | %"x1¼"
CEA4131A
½"x4¾"
½"x3¼" | 1
1
1
1 1 1 1 | | | 2319A | 2370
2317
2318 | Governor Case Overflow Pipe Gland Washer " " Stuffing Box." " " " Stuffing Box Gland Governor Case Overflow Pipe | YKA2370A
YKA2317A
YKA2318A
YKA2319A | 1
1
1 | 1 | 1 1 | 1
1
1 | 1
1
1 | 1
1
1
1 | 1
1
1 | 1 | | | " " " Plate. | 2319A
1089A | " " Pipe. " Packing Ring. | YJA2319B | 1 | | | 1 | 1 | | | | | | 3056 Lubricating Oil Sump Strainer Gasket | 2312A | " " Plate. " " Plate. " " " Plate. " " " Plate. " " " Plate. " " Plate. " " Plate. " " Plate. " " " " Plate. " " " " " " " " " " " " " " " " " " " | Y2KA2312B
Y3KA2312B
Y4KA2312B
Y5KA2312B | | 1
 | | | 1 | 1 | .1 | 1 | | | | 3056 | Lubricating Oil Sump Strainer Gasket | YKA3056A | | 1 | 1 | 1 | 1 | 1 | | | | ### List Division No. 10. Fuel Reservoir, Oil Pump and Oil Sump (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12″x15 | | | | 14"x | 17" | | | |--|---|---|---|--|--|--|--|--|---|--|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | 6055
4645A | Base Sump Pipe Drain Fitting | YKA6055A
YKA4645B
½" x ½"
YKA2312A | 1
1
1
As R | 2
2
2
eq | 3 3 3 | 1
1
1
As R | 2
2
2
eq | 3 3 3 | 4 4 4 | 5
5
5 | 6
6
6 | | 2312A | # # # # Shim
Shim
Shim
Shim
Shim | Y2KA2312A
Y3KA2312A
Y4KA2312A
Y5KA2312A
Y6KA2312A | | As R | As R | eq | As R | | eq.
As R | eq.
As R
As R | eq. | | 39-C | Fuel Supply Pump Rocker (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 39
55
2307 | Fuel Supply Pump Rocker " " " Pin " " Washer " " " Cap Screw " " " " Set Screw " " " " Lockwasher " " " " Jam Nut | YKA39A
YKA55A
YKA2307A
½4 x ½ "
38" x 1"
38" | 1
1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | | 56
2605 | Fuel Supply Pump Rocker Ecc. Pin. Eccentric Pin Jam Nut. " Lockwasher. " Cotter. | YKA56A
YKA2605A
⁵ / ₈ "
¹ / ₈ "x1 ¹ / ₄ " | 1
1
1
1 | 1
1
1
1 | 1
1
1 | 1
1
1 | 1
1
1
1 | 1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | | 58
58A
59
2604 | Fuel Supply Pump Rocker Shaft " " " " Shaft " " " Collar " " " Screw " " " Lockwasher " " " Plug | YKA58A
YKA58B
YKA59A
YKA2604A
1/4"
1/4" | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1
1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | | 464B-C | Fuel Supply Pump Strainer and Overflow | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 464B | Strainer and Overflow Casing, always with "" Stud "" Dowel "" " Pipe Plug (Solid) "" " Plug (Solid) | YKA464B
5/8" x 2 1/2"
1/6" x 1/2"
1/4" | 1 1 1 1 1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 | 1
1
1
1
1 | | 986D
1902A
2108A
2296A
5350E
2334 | Strainer and Overflow Cover " " Gasket. " " Plug Gasket. " " Plug. " " " Purolator Filters. " " " Casing Gasket. | YKA986B
YKA1902C
YLA2108A
YKA2296B
SK2046
YKA2334A | 1
1
1
3
1 | 1
1
1
3
1 | 1
1
1
3
1 | 1
1
1
3
1 | 1
1
1
3
1 | 1
1
1
3
* 1 | 1
1
1
3
1 | 1
1
1
3
1 | 1
1
1
1
3
1 | | 570B-C | Air Starting Valve (Complete) | | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | | 570B
572
903
2335 | Air Starting Valve (See Chart #14 also). " " Spring. " " Plug (See Chart #14 also). " " Gasket. | YKA570A
YKA572A
YKA903A
YKA2335A | 1
1
1
1 | 1
1
1
1 | 2
2
2
2 | 1
1
1
1 | 1
1
1
1 | 2 2 2 2 | 2
2
2
2 | 2
2
2
2 | 3 3 3 | | 524A-C | Air Starting Cam and Eccentric (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 524A
525A
526A
2764
2297
528A | Air Starter Cam and Eccentric, | YKA524A
YKA525A1
YKA526A1
YKA2764A
YKA2297A
YKA528A
½" N.F. Castle
½" X1"
½" Slotted
.062"x4½" | 1
1
1
2
1
2
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | 1
1
1
2
1
2
2
2
2
2
2
2 | | 529A | Air Starter Cam and Eccentric Key | YKA529A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | #### List Division No. 11. Injection Pump, Rockers and Housing Repair Chart No. 11 List Division No. 11. Injection Pump, Rockers and Housing (Continued) Repair Chart No. 11A Repair Chart No. 11B | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | " | | | 14"3 | 17" | | | |--------------------------------------|--|---------------------------------|-----------------------|----------------------------|-------------------|-----------------------|----------------------------|-------------------|-----------------------|-------------------------|------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl
Used | Cyl
Used | | 531B-C | Injection Pump (Complete) Injection Pump Body, always with " " Pipe Plug " Suction Valve Seat. | YKA531D1
CJB3378A
CKB755A | 1 1 1 | 2
2
2
2 | 3
3
3
3 | 1 1 1 | 2
2
2
2 | 3
3
3 | 4 4 4 | 5 5 5 | 6 6 6 | | 544
2108
{ 387
535B | Injection Pump Discharge Valve Cage. "Gasket. "Gasket. "Plunger Cylinder, always with. "Plunger (Not Fur. Sep.). | YKA2108A | 1
1
1 | 2
2
2
2 | 3
3
3 | 1
1
1 | 2
2
2
2 | 3
3
3 | 4
4
4 | 5
5
5
5 | 6
6
6 | | 6660
6659
260B
2679
6682 | Injection Pump Plunger Cylinder Gasket | YKA6659A | 1
1
1
1 | 2
2
2
2
2
2 | 3 3 3 3 | 1
1
1
1 | 2
2
2
2
2
2 | 3
3
3
3 | 4
4
4
4
4 | 5
5
5
5
5 | 6
6
6
6 | | 91
537
536A
259
6325-C | Injection Pump Discharge Valve a "Spring." a "Suction Valve." a "Spring." Injection Pump Relief Valve Cage (Complete). | YK537
YKA536A1
YKA259A | 1
1
1
1
1 | 2
2
2
2
2
2 | 3 3 3 3 | 1
1
1
1
1 | 2
2
2
2
2
2 | 3 3 3 3 | 4
4
4
4
4 | 5 5 5 5 | 6
6
6
6 | # List Division No. 11. Injection Pump, Rockers and Housing (Continued) | Repair | Before Ordering Repair Parts Read the Instructions
on Page 33. | Symbol | 1 | 12"x15 | 3 | 1 | 1 2 | 14" | 17" | | 1 0 | |--|---|--|---|----------------------|---------------------------|---|---|---|----------------------|----------------------|---| | Number | NAME OF PART | Size | Cyl.
Used 5
Cyl.
Used | Cyl
Used | | 6325-C | Injection Pump Relief Valve Cage (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | |
6325
2108
2058B
2108B
2060E
6281A
6282
6283
1561
1561A
2108B | Injection Pump Relief Valve Cage | CKC6325A
YKA2108A
CKC2058A
CJA2108A
CKC2060A
CKC6281A
CKC6282A
CKC6283A
CFE1561A
CFE1561B
CJA2108A | 1 | 222222222222 | 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1
1
1
1
1
1
1
1
1 | 2 | 000000000000000000000000000000000000000 | 4 4 4 4 4 4 4 4 4 | 555555555555 | 6
6
6
6
6
6
6
6
6 | | 473A | Injection Pump Body Gasket | YKA473A | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | 654Q-C | Injection Pump Rocker (Complete) | | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | | | Note:—6 Cyl. Engine. Used on Cyl. No. 3 and No. 4. 5 "Engine. " "Cyl. No. 4. 4 "Engine. " "Cyl. No. 1 and No. 4. 3 "Engine. " "Cyl. No. 2. 2 "Engine. " "Cyl. No. 1 and No. 2. 1 "Engine. " "Cyl. No. 1. | | | | | | | | | | | | 654Q
552D
553D
2324 | Injection Pump Rocker " Rocker Injection Pump Cam Rocker Injection Pump Cam Rocker " " Pin and Felt " Rocker Dowel | YKA654C2
Y4KA654E1
YKA552D3
YKA553D3
YKA2324A1 | 1

1
1
2 | 2

2
2
4 |
1
1
2 |
1
1
2 |
2
2
4 | 1

1
1
2 | 2
2
2
4 | 1
1
1
2 | 2 2 2 4 | | 654R-C | Injection Pump Rocker (Complete) | | | | 1 | | | 1 | 2 | 1 | 2 | | | Note:—6 Cyl. Engine. Used on Cyl. No. 1 and No. 6. 5 " Engine. " Cyl. No. 5. 4 " Engine. " " Cyl. No. 2 and No. 3. 3 " Engine. " " Cyl. No. 1. | | | | | | | | | | | | 654R
552D
553D
2324 | Injection Pump Rocker | Y3KA654E1
Y4KA654F1
Y5KA654D
Y6KA654K
YKA552D3
YKA553D3
YKA2324A1 | | | | | | 1

1
1
2 | 2

2
2
4 | 1

1
1
2 | 2
2
2
4 | | 654S-C | Injection Pump Rocker (Complete) | | | | 1 | | | 1 | | 1 | 1 | | | Note:—6 Cyl. Engine. Used on Cyl. No. 5. 5 " Engine. " " Cyl. No. 3. 3 " Engine. " " Cyl. No. 3. | | | | | | | | | | | | 654S
552D
553D
2324 | Injection Pump Rocker (Eye End) | Y3KA654F1
Y5KA654C1
Y6KA654H1
YKA552D3
YKA553D3
YKA2324A1 | | | 1 1 | | | i 1 | | 1
1
1
2 | 1
1
1
2 | | 654T-C | Injection Pump Rocker (Complete) | | | | | | | | | 1 | 1 | | | Note:—6 Cyl. Engine. Used on Cyl. No. 2.
5 "Engine. " "Cyl. No. 2. | | | | | | | | | | | | 654T
552D
553D
2324 | {Injection Pump Rocker (Fork End). " Rocker. Injection Pump Cam Roller. " " Pin and Felt. " Rocker Dowel. | Y6KA654J1
Y5KA654B1
YKA552D3
YKA553D3
YKA2324A1 | | | | | | | | 1
1
1
2 | 1
1
1
2 | | 654U-C | Injection Pump Rocker (Complete) | | | | | | | | | 1 | | | 654U
552D
553D
2324 | Injection Pump Rocker | TITE A ODOLA A 4 | | | | | | | | 1
1
1
2 | | | 659E
659F | Injection Pump Plunger Push Rod (8.42") [Injection Pump Plunger Push Rod (4.37") " " " Rod (13.15") " " " Rod (11.56") | Y4KA659F | | 2 | 1 | 1 | 2 | 1 . | | 1 1 | 2 | | 659G | Injection Pump Plunger Push Rod (5.02") Always with | Y4KA659E
Y3KA659G | ::::: : | | i | | :::: | i. | 2 | ., | 2 | | 659H
659J | Injection Pump Plunger Push Rod (12.30") | Y6KA659C
Y5KA659A | | | | | | | ::: | 1 | 2 | | 896A | Injection Pump Plunger Push Rod (10.11")
Injection Pump Push Rod Shoe | TENTE A ONOTO | | 2 | 3 | i | 2 | 3 | 4 | 5 | 6 | | 2326A | Injection Pump Rocker Spring. "Spring. Injection Pump Rocker Spring. Injection Pump Rocker Spring Pin. | | 1 | 2 | 2
1
1 | 1 | 2 | 2
1
1 | 4 | 5 | 5 | List Division No. 11. Injection Pump, Rockers and Housing (Continued) | Repair | Before Ordering Repair Parts Read the Instructions
on Page 33. | Symbol | 1 | 12'x15 | 3 | 1 | 1 2 | 14"3 | 1 4 | 1 5 | 1 6 | |---|---|---|--------------------------------------|---|---|---|--|---|--|---|--| | Number | NAME OF PART | Size | Cyl.
Used | Cyl.
Used | Cyl. | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | C | | 2337
2338
2338A
2338B
657D
1941B
3378
626A
626B | Rocker Spring Post (with 2 Holes) " Post (with 3 Holes) " Post (with Slot) " Post (with 1 Hole) Rocker Shaft (Short). Governor Cam Rocker Shaft. " Plug Injection Pump Suction Valve Adj. Screw. " Screw. " Screw. | Y2KA2337B
YKA2338B2
YKA2338D
YKA2338E
Y2KA657E
YKA1941E
CDA3378A
YKA626B
YKA626C | 1

1
.1
.1 | 1
1
1
1
1
2
1 | 1
2

1
2
3
2
1 | 1

1
1
1 | 1
1
1
1
2
1
1 | 1
2

1
2
3
2
1 | 2
2
2
2
4
3
1 | 2
1
1
1
2
2
5
4
1 | | | 627A
627B
2327 | " " " Lockwire " Lockwire " Nut. " | .081"x1"
YKA627A1
YKA627B
YKA2327A1 | 1 | 1
1
1
6 | 1
2
1
9 | 1
3 | 1
1
1
6 | 1
2
1
9 | 1
3
1
12 | 1
4
1
12 | 13 | | 511B-DC | Pump Case Housing (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 511B-B | Pump Case Housing, always with " Housing, always with. " Housing, always with. " Housing, always with. " Housing, always with. | Y3KA511B5 | 1 | 1
 | i | 1
:::::::::::::::::::::::::::::::::::: | 1 | 1 | 1 | .1 | | | 2361
2360
510A
642A
651B
2321
1379
6631A | Governor Case Stud. Pump Case Housing Plug. " " Blank Flange. " " Overflow Pipe. Injection Pump Stud. Push Rod Stem Bushing (Not Fur. Sep.) Pump Case Housing Fuel Reservoir Stud. Governor Push Rod Bushing. Fuel Reservoir Stud. Injection Pump Stud. Air Inlet Stud. Overflow Casing Stud. Fuel Pump Stud. Fuel Pump Stud. | ½"x1¾" YKA2361A YKA2361A YKA510A YKA510A YKA642A YKA651A YKA2321A Y3KA1379A ½"x6¾" YKA6631B ½"x8½" ½"x8²" | 6 1 1 1 1 1 4 2 4 4 2 2 3 | 61 2 2 42 4 4 2 3 3 | 6
1
3
3
4
1
2
6
4
2
3 | 6 1 1 1 1 1 1 4 2 4 4 2 2 3 | 6
1
2
2
4
2
4
4
2
3 | 6
1
3
3
4
1
2
6
4
2
3 | 6
1
4
4
2
2
8
4
2
3 | 1
5
5
4
2
2
10
4
2
3 | 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 1380B | {Lubricating Rod Cover | YKA1380F
YKA1380G | 1 | 1 | 1 | 1 | 1 | | 1 | | | | 849A
512A
469A | {Pump Case Housing Cover | YKA849C
Y4KA849D
34"x3"
YKA512A
YKA469A
34"x3"
36"x2"
36"x2" | 1
3
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | 1
3
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | 1
3
2
2
2
2
1
3
8 | , | | 266
472A
2322
2328
2329 | Injection Pump Suction Valve Push Rod Spring. Pump Case Housing Gasket. " Gasket Pump Case Housing Lower Base Tap Bolt. Fuel Hand Control Shaft Support. " Dowel. | YKA266B
YKA472A
Y4KA472A
YKA2322A
Y4KA2328A
Y4KA2328A | 1
2
4 | 2
2
4
 | 3 2 4 | 1
2
4 | 2
2
4 | 3
2
4 | 4
2
4
1 | 5
2
4
1
1 | | | 2173A-C | Fuel Hand Control (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 2173A | Fuel Hand Control Shaft and Cam. " " Cam. " " Cam. " " " Cam. " " " Cam. " " " Cam. | YKA2173B
Y3KA2173B
Y4KA2173B
Y5KA2173A
Y6KA2173B | 1 | 1 | i | 1 | 1 | 1 | 1 | 1 | | | 2203
2202
2201A-C | Hand Control Quadrant Plate Fuel Hand Control Lever Quadrant. Hand Control
Quadrant R. H. M. Screw. Hand Control Lever (Complete). | YKA2203A
YKA2202A
¼"x 5%" | 1
1
3 | | 0001 A .C | | | _ | _ | 1 | _ | 1 | _ | | 1 | - | | 2201A-C
2201A
2204
2205
2257 | Fuel Hand Control Lever (Complete) Hand Control Lever " " Latch Spindle " " Latch " " Spring " " " Cap Screw " " Key | YKA2201B
YKA2204A
YKA2205A
YKA2257A1
38"x114"
'4"x14"x1" | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | | | 3359
3360
8818 | Rooker Shaft Plate | YKA3359A
YKA3360A
YKA3818A
#19x4"
Y4KA6521A
YKA6521D
Y6KA6521B | 1
2
2
1 | 2
4
2
2 | 3
6
4
3 | 1
2
2
1 | 2
4
2
2
2 | 3
6
4
3 | 4
8
4
4
1 | 5
10
5
5 | 1 | #### List Division No. 12. Lubricator and Air Valve | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | | 14"x | 17" | | | |--|--|--|---|--------------------------------------|---|--|--|--|---|---|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cy | | 215A
215B | Lubricator Bracket Bra | Y2KA215B | 1 | i | · · · · · · · · · · · · · · · · · · · | ,1
 | 1 | 1 | 1 | 1 | 1 | | 271A | (Lubricator | 13121A
13122A
13123A | 1 | i
::::: | i | 1 | 1 | 1 | 1 | 1 | | | 2751 | Lubricator Bracket Capscrew | ½"x1"
½"x1¾"
YKA2751A | 2
4
2 | 2
4
2 | 4
4
4 | 2
4
2 | 2
4
2 | 4
4
4 | 4
4
4 | 4
4
4 | | | 216A-C | Lubricator Drive Mechanism (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 216A
1092A
2314
1554D
3254
217D | Lubricator Drive Rod | YKA2314A
½" N. F.
YKA1554D
¾"x1"
VK A3254A | 1
1
1
1
1
1
2
1
1 | 1
1
1
1
1
2
1
1 | 1
1
1
1
1
1
2
1
1 | 1
1
1
1
1
1
2
1
1
1 | 1
1
1
1
1
1
2
1
1
1 | 1
1
1
1
1
2
1
1 | 1
1
1
1
1
2
1
1 | 1
1
1
1
1
1
2
1
1 | 1
1
1
1
1
1
2
1
1
1 | | 432
451
452
454 | Lubricator Tubing. ¼°O.D. Note:—Specify Length and Order Fitting required. Tube Elbow (½° Pipe Thd., ¼°O.D. Tube). Tube Connector (½° Pipe Thd., ¼°O.D. Tube) Tube Union (¼°O.D. Tube). | | | | | Order | as R | equire
equire
equire
equire | d.
d. | | | | 1029A-C | Lubricating Tube Clamps (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 1029 | {Lubricator Tube Clamp (Inside of Pan) | Y3K1029A | | 2 | 2 | ::::: | | 2 | 2 | 2 | 1 | | 1029A | Lubricator Tube Clamp (Outside Pan) Lubricator Tube Clamp (Outside Pan) | Y2KA1029A
Y3KA1029A
Y4KA1029A
Y5KA1029A
Y6KA1029A | | 1 | 1
 | | 1 | 1 | | .1 | 1 | | 1030
1031
1031A
1031A
1031A
1031D
1010D
1010E | Lubricator Tube Clamp (Inside Pan). " Clamp (Inside Pan). " Clamp (Inside Pan). " Clamp (Inside Pan). " Clamp (Inside Pan). Cylinder Lub. Tube Clamp (One Tube). Cylinder Lub. Oil Tube Clamp " " Screw. " " Clamp (Two Tube). Cylinder Lub. Tube R. H. M. Screw. " " Screw. " " Nut. " " Nut. " " Lockwasher. | Y3K1030A
Y3K1031A
Y6K1031A
Y6K1855A
CFA1010B
CFE1010A
#10-24x %"
CFA1011B
#10-24x %"
#10-24x %"
#10-24x %" | 1
1
1
1
4 | 3
2
2
1
8
1
1 | 1
1
1 | 1 | 3
1
1
1
8
1 | 2

4
2
2
2
12
11
1 | 2
2
2

5
3
3
3
16
1
1 | 2
2
6
4
4
20
1
1 | 2 | | | Lub. Tube Clamp R. H. M. Screw | 14"x1" | | 2 | | | 2 | 4 | 8 | 12 | 1 | # List Division No. 12. Lubricator and Air Valve (Continued) | D | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | | | 2 | 14"x | 4 | 5 | 1 6 | |---|--|--|-------------------|----------------------------|-------------------|-----------------------|-------------------------|-------------------------|---------------------------|-----------------------------|---------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used Су | | 597B-AC | Air Valve (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | | 597B
595A
233B | \{ \begin{align*} & \text{Air Valve Seat.} & \text{ Seat.} & \text{ Spring.} & \text{ Spring.} & \text{ Air Pipe.} & \text{ Pipe.} & \text{ Pipe.} & \text{ Pipe.} & \text{ Seat.} & \text{ Spring.} & \text{ Seat.} & \text{ Spring.} & \text{ Seat.} \text | YJA597B
YKA597C
YK595A1
YJA233B
YJA233B | 1
20
1
1 | 2

40
2
2
2 | 3
60
3
3 | 1
20
1
1 | 2
40
2 | 3
60
3 | 4
80
4
4 | 5
100
5
5 | 120 | | 5303
5 304 | Air Pipe Nut. | %"
YJA5303A
YKA5304A
YKA2070A
¼"x½"
4409 | 1
1
1
2 | 2
2
2
4 | 3
3

6 | 1
1
1
1
1 | 2222222222 | 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 | 5
5
5
5
5
5 | 6 | | 598B
599B
599A | " " " Slotted Nut | %" 1/8"x1½"
YKA598C YKA599B VJA599A | 1
1
1 | 2
2
2
2
2 | 3 3 3 | 1
1
1
1 | 2 2 | 3 3 | 4 4 4 | 5
5
5 | | | 2070 | " " " " Jam Nut. " " " Lockwasher. Air Valve Seat Guide Stud Washer. | % C. P.
% C. P.
% "C. P. | 1 1 1 | 2 2 2 | 3 3 | 1 1 1 | 2 2 2 | 3 3 | 4 4 | 5
5 | 6 | | 593A-C | " Ring (Complete) | | i | 2 | 3 | î | 2 | 3 | 4 | 5 | - 6 | | 593A-C | Air Valve Rings (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | (| | 591A
592A
593A | Air Valve Ring #2. " Ring #3. " Ring #4. | YLA591A1
YLA592A1
YLA593A1 | 1 1 1 | 2 2 2 | 3 3 3 | 1 1 1 | 2 2 2 | 3 3 | 4 4 4 | 5
5
5 | (| | 199A | (Air Valve Seat Gasket | YJ199
YK199 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | 6519A
1617
3235 | Lubricator Overflow Pipe Bracket | YKA6519C
YKA1617A
³ / ₈ "x1"
YKA3235A | 1
1
2
1 | | 6467A | {Lubricator Overflow Pipe Pipe | YJA6467B
YKA6467B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | | | 3633
3633
3633
4900 | Lubricator Overflow Nipple " " Nipple " " Nipple " " Bypass Pipe | YKA3633M
YKA3633G
YKA3633K
YKA4900A | 1
1
1 | 1
1
 | 1
1
1 | 1
1
 | 1
1
1 | 1
1
 | 1 1 | 1 1 | | | 1015-C | Injection Tube Clamp (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1010F
1010B
1011F
1011D
1012B
1012A
1013A
1014
1015 | Injection Tube Clamp (To Cyl. and Pan) | YJA1010A
CKA1010B
YJA1011C
CKA1011B
YJA1012A
CKA1012B
CKA1013B
CKA1014B
CKA1015B | 2 | | 2
1
1 | 2 | 5 1 | 8
1
1
 | 12
1
1
1
1 | 14
1
1
1
1
1 | 14 | | 1329B | {Injection Tube Clamp (For 2 Tubes) | Y2JA1329A
Y3JA1329A | | 2 | 2 | | | | | | | | 1329A | Injection Tube Clamp (For 2 Tubes). " Clamp (For 3 Tubes). " Clamp (For 4 Tubes). " Clamp (For 5 Tubes). " Clamp (For 5 Tubes). " Clamp (For 6 Tubes). | Y2KA1329A
Y3KA1329A
Y4KA1329A
Y5KA1329A
Y6KA1329A | | | | | 2 | 2 | 2 | 2 | | | | Injection Tube Clamp Cap Screw " R.H.M. Screw " " Lockwasher " " R.H.M. Screw " " Nut. | 14"x1"
#10-24x1/2"
3/6"
#10-24x3/4"
#10-24 | 2
4
4 | 2
4
6
2
2 | 4
8
4
4 | 4 4 | 2
10
14
4
4 | 2
16
24
8
8 | 2
24
36
12
12 | 2
28
44
16
16 | 2 4 2 2 | #### List Division No. 13. Air Start Piping ← Gov. End Repair Chart No. 13 | | Before Ordering Repair Parts Read the Instructions | Symbol | 1 | 2"x15 | , | | | 14"x | 17" | | | |--------------------------------------|---|--|--------------|--------------|-----------------------|--------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Use | | 700J
700K
700L
700M
700N | Air Start Pipe (Upper) Cyl. No. 1 " Pipe (Upper) Cyl. No. 3 " Pipe (Upper) Cyl. No. 3 " Pipe (Upper) Cyl. No. 3 " Pipe (Upper) Cyl. No. 4 " Pipe (Upper) Cyl. No. 5 Pipe (Upper) Cyl. No. 5 | YKA700G
Y3JA700J
Y3KA700L
Y5KA700D
Y3KA700K
Y3JA700K
Y5KA700E
Y6KA700X | | i | 1 | 1 | | ,1
1 | 1
1 | 1 | 1 1 1 | | 701E
701F
701G
701H | Air Start Pipe (Lower) Cyl. No. 1 | Y5KA701A
YKA701E
YJA701D
Y3KA701H
Y3JA701G
Y3KA701J
Y3JA701H
Y3KA701H
Y6KA701M | | | 1
1
1 | i | | 1 | 1
1 | 1 1 1 | 1 1 1 | | ΦΦΦΦΦΦ | Air Start Pipe Union Elbow 20FM8DH " R. R. Union 20FM8A " Nipple 20FM6A " Nipple 20FM6A " Nipple 20FM6A " Clamp Capscrew 11FM7A " Umar Clamp Capscrew 11FM25A | 1½"
1½"
1½"x5½"
1½"x2½"
38"x2" | 1
1
i | 1
1
 | 2
2
2
2
2 | 1
1
1 | 1
1
1 | 2
2
2
2
2 | 2
2
2
2
2 | 2
2
2
2
2 | 3
3
3
3
3 | | 2789
2789A | Air Start Pipe Clamp (2 Pipes) | Y4KA2789A
Y3KA2789B | | ::::: | | | | | 4 | 4 | 4 2 | | 1596 | Air Start Distributor Body with Studs | YKA4596A
Y3KA4596A
Y4KA4596A
Y6KA4596A | 1
: | 1
 | ``i` | 1
 | | | 1 | 1 | 1 | | 573B | Air Start Distributor Body Gasket | YKA573A
Y3KA573A
Y6KA573A | 1 | | ``i`. | | 1 | 1 | 1 | 1 | 1. | | 573D
2601 | Air Start Shut-off Valve Cage Gasket | YKA573B
Y6KA2601A | 1 | 1 | 1 | 1 | | 1 | 1 | 1 4 | 1 4 | #### List Division No. 14. Air Start Rocker and Push Rods Repair Chart No. 14 12"x15" 14"x17" Before Ordering Repair Parts Read the Instructions on Page 33. Symbol Repair Number or Size Cyl. Used Cyl. Used NAME OF PART 1196E-C Air Start Rocker (Complete)..... 1 1 1 1 1 1 Air Start Rocker, always with "Rocker, always with "Rocker, always with Air Start Rocker Mushroom..... YKA1196B Y3KA1196C Y4KA1196C YKA658A 1 i i 1196E 1 i i i 658A 1 1 YKA2332A YKA2331A YKA2324A 2332 2331 $\frac{1}{2}$ 1 2 1 2 1 2 2 1 2 2976 1196F-C 1 Air Start Rocker (Complete)..... 1 1 1 1 Y3KA1196D Y4KA1196D Y5KA1196A YKA658A Air Start Rocker, always with... " "Rocker, always with... " "Rocker, always with... Air Start Rocker Mushroom..... 1 1 1 1196F i 658A 1 2332 2331 2976 YKA2332A YKA2331A YKA2324A 12 2 1196G-C Air Start Rocker (Complete)..... 1 **Y6KA1196B** YKA658A 1196G 658A Air Start Rocker Roller... 2332 2331 2976 YKA2332A YKA2331A YKA2324A #### List Division No. 14. Air Start Rocker and Push Rods (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | " | | | 14"x | r17" | | | |---------------------------------|--|---|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Repair
Number | o Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | 1
Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Oyl.
Used | 6
Cyl
Use | | 674A | Air Starter Push Rod (10" long) " " Rod (15" long) " " Rod (131/6" long) | YKA674A
Y3KA674A
Y4KA674A | 1 | 1 | i | 1 | 1 | i | 1 | 1 | 1 | | 674B | {Air Starter Push Rod (6½ long)
" " Rod (6½ long)
" " Rod (15 long) | Y3KA674B
Y4KA674B
Y5KA674A | | | 1 | ::::: | | 1 | | 1 | 1 | | 674D
2326 | Air Starter Push Rod (14" long) | Y6KA674A
YKA2326A4 | ··i·· | ···i·· | 2 | _i | 1 | 2 | 2 | 2 | 1 3 | | 568D-C | Air Start Control (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 568D | Air Start Hand Control Shaft and Cam | YKA568F
Y3KA568F
Y4KA568F
Y5KA568A
Y6KA568F | 1 | 1 | i | 1 | 1 | 1 | 1 | 1 | 1 | | 2202A | Hand Control Lever Quadrant | YKA2202C1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2201A-C | Air Start Hand Control Lever | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2201A-C | Air Hand Control Lever (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2201A
2204
2205
2257 | Air Hand Control Lever "" " Latch Spindle "" " Latch Latch "" " Spring. "" " " Cap Screw "" " Key | YKA2201B
YKA2204A
YKA2205A
YKA2257A1
%%"x114"
'%"x14"x1" | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | | 2293 E -C | Air Starter Shut-off Valve (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2293E
2294B
2295A
1189 | Air Starter Shut-Off Valve Cage. α α α Valve β γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ | YKA2293E
YKA2294C
YKA2295B
YKA1189A | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1
1 | 1
1
1 | 1
1
1 | 1
1
1
1 | | 3143
574
2335A | Air Starter Shut-Off Valve Spring Guide | YKA3143A
YKA574B
YKA2335B | 1
1
1 1 1 1 | | 570B
903 | Air Start Valve (See Chart #10 also) | YKA570A
YKA903A | 1 1 | 1 1 | 2 2 | 1 1 | 1 1 | 2 2 | 2 2 | 2 2 | 3 | ### List Division No. 15. Parts for Attaching Woodward Governor | | Before Ordering Repair Parts Read the Instructions | Symbol | 1000 | 12″x15 | ' | 100 | | 14" | x17" | | | |------------------|--|------------------------|--------------|--------------|---------------|--------------|--------------|-------------------|--------------|-------------------|----| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | 5
Cyl.
Used | U | | 240 | Governor Drive Flange | YKA240A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 323 | Crankshaft Governor Cap Screw | NW323A
#16x12" | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | Governor Spiral Sleeve Dowel | #825
#825 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 46 | Overspeed Governor Trip Lever Shaft Spring Ring | PCD346A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 346A | Overspeed Governor Trip Pin Spring Ring | PCD346A
ZBA346 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | | | 01F | Governor Spiral Sleeve (Std. Rotation) | YKA501H5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 01G | " Sleeve (Rev. Rotation) | YKA501J5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 02E | " Cam Sleeve " Ball Bearing Adj. Bracket | YKA502C5
YKA505A | 1 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2
 | | 05A
751 | " Adjusting Bracket Washer | YKA2751A | 4 | 4 | 4 | 1 | 4 | 4 | 1 | 1 | | | 13 | " Oil Thrower | YKA513A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 10 | " Adj. Bracket Lock Wire | #16"x10" | 2 | 2 | 2 | 2 | 2 . | 2 | 2 | 2 | 1 | | | " " Dowel | #309 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | | | " Roller Ball Bearing | #6203 SKF | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 66B | Injection Cam Key | YKA566B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 49B | Valve Gear Housing Governor End Cover | YKA849E | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 49D | Valve Gear Housing Governor End Cover | Y4KA849E | | | | | | | 1 | | | | 00 | " " " Cover | Y5KA849B | | | | | | | | 1 | | | 28 | Governor Trunnion Yoke Collar Lock | YKA1528A | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | | | 43 | Overspeed Governor Trip Spring | YKA2443A
YKA2535B | 2 2 | 2 2 | $\frac{2}{2}$ | 2 | 2 | 2 | 2 | 2 2 | | | 35
38A | Governor Trunnion | YKA2538B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 62 | Governor Roller Ball Bearing Pin | YKA2662A | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | 48 | Overspeed Governor Cam Shaft Brg. Cap | YKA2848A | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 18 | | 20 | Overspeed Governor Camshaft Brg. Cap Screw 11FM7A | 3/8"x 7/8" | 2 2 2 | 2 | 2 2 | 2 2 | 2 2 | 2
2
2
2 | 2 | 2 | | | | Overspeed Governor Camshaft Brg. Cap Screw | #20x6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 76A | " "Trip Pin | YKA2976B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 96 | " Push Rod Guide Gasket | YKA3396A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 44 | Governor Ball Bearing Adj. Bkt. Cap Screw | YLA4044A | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | 65A | Overspeed Governor Weight Spring (300 R. P. M.) (257 R.P.M.) | YKA4965B2 | | | | 1 | 1 | 1 | 1 | 1 | | | 65B | " Spring (360 R. P. M.) | YKA4965C1 | 1 | 1 | 1 | | | | | | | | 67 | " Push Rod | YKA4967A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 71 | Overspeed Governor Trip Lever | YKA4971A1
YKA4977A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |)77
)81 | u u u Pin | YKA4977A1
YKA4981A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 81 | Overspeed Governor Trip Lever Link. | YKA4981B | Solog | 1 00 | require | d | 204 | | | | | | 81 | Overspeed Governor Trip Lever Link | YKA4981C | Delec | u i as | require | | | | | | | | 01 | " " Woodruff Key | #3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | List Division No. 15. Parts for Attaching Woodward Governor (Continued) 12"x154 14"×17" Before Ordering Repair Parts Read the Instructions Symbol Repair on Page 33. or Size Cyl. Used Cyl. Used Cyl. Used NAME OF PART 4982 4985 Shaft... " " Shart. " Shart. " Shaft. 1 3/₃₂"x1¹/4" YKA4987A1 4987 #843C 1/8"x3/4" YKA4989A YKA4991B YKA5601A #309 YKA5824A " " " Cotter. " " " Screw... " " Spring Plug. Governor Trunnion Yoke Thrust Nut. " " Dowel. Overspeed Governor Push Rod Guide. Overspeed Governor Push Rod Guide Fil. Head Screw. 11FM8 " " " Lockwasher. 11FM8 2 2 1 2221112242 2 2 1 1 1 1 4991A 5601A 5824 2 2 4 2 2 4 2 " Lockwasher 11FM1. " " Drive Lever " Lockwasher 11FM1. " " Drive Lever " Lockwasher 11FM1. " " Bushing " Lever " Lockwasher Bushing " Lockwasher Lockwasher" " Lockwasher Lockwas W7-11 W7-12 W7-13 W14-3 W14-11 W16-6 W20-4 W22-20 7-11 7-12 7-13 14-3 14-11 W22-20 W22-88 W23-9 W23-10 W32-16 W32-17 22-20 22-88 23-9 23-10 32-16 32-17 W33-1 W33-6 W33-7 " Shaft. Fuel Shaft. Splined Shaft. Terminal Shaft. Governor Gear Coupling. " Case Cover—Large. " Case Cover—Small. 33 - 1W33-10 33-10 W42-3 W45-39 W45-40 42-3 45-39 45-40 54-1 Governor Case Plug..... List Division No. 16 Governor Repair Chart No. 16 | | Before Ordering Repair Parts Read the Instructions | Symbol | 100 | 12"x15 | " | | | 14"x | 17" | | | |--|--|--|---|---|---|----------------------------|---|---|----------------------------|---|---| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Use | | W56-1
W68-2
W87
W88-1
W114-4
W205PP | Drive Gear Ball Bearing Retainer Drive Bearing. Fuel Shaft Lever Spring. Terminal Shaft Oil Seal. Governor Case Oil Cup. Drive Gear Ball Bearing | 56-1
68-2
#87
88-1
114-4
205PP | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 1 1 | | 501 B-BC | Governor (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 501B
502D
503A
546E
566A
505 | Governor Spider, always with " Cam " " Link Pin Injection Cam " " Key Governor Cam Link | YKA501C1
YKA502A2
YKA503A
YKA546A1
YKA566A
YK505 | 1
1
2
1
1
2 | 1
1
2
1
1
2 | 1
1
2
1
1
2 | 1
2
1
1
2
2 | 1
1
2
1
1
1 | 1
1
2
1
1
2 | 1
1
2
1
1
2 | 1
2
1
1
2
2 | 1
1
2
1
1
2 | | 507E -
167A | Governor Weight, always with " Weight, always with " Bushing | YJA507E
YKA507G
YKA167A1 |
2 | 2 | . 2
2 | 2
2 | 2
2 | 2
2 | 2
2 | 2
2 | 2 2 | | 83A
51
454
6541
504
48A | Governor Weight Pin " " Nut " " Lock " " Stop Pin " " Jam Nut. Governor Weight Drag Spring " " Link Pin " " " Nut " " Spring Pin " " Nut " " Nut " " " Nut | YKA251A
YKA3454A
5%" C. P.
YKA6541B
YK504
5%" C. P.
YKA48A | 2 | 2 | 2 | 22222222222 | 2 | 222222222222222222222222222222222222222 | 2 2 2 2 2 2 2 2 2 2 | 2 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | 256D-C | Governor Spring (Complete) | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 256D-C | Governor Spring (Complete) | | - 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 256D
52B | Governor Spring (360 R.P.M.), always with. " (300 R.P.M.), always with. " " Plug | YJA256E
YKA256J
YKA52C | 22 | 22 | 2 | 2
2 | 2 2 | 2
2 | 2
2 | 2
2 | 2 2 | | 51B
70A
85A | Governor Spring Eye Bolt. Adjusting Screw Pin. Screw. " Cotter. | YKA51B
YKA70A
YKA85A2
½"x1¼" | 2
2
2
2 | 2
2
2
2 | 2
2
2
2
2 | 2
2
2
2 | 2
2
2
2
2 | 2 2 2 2 | 2
2
2
2 | 2
2
2
2
2 | 2
2
2
2
2 | | 2341-C | Governor Case (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2341 | Governor Case, always with " End Plate Cap Screw " " Hand Hole Plate Cap Screw " " Pipe Plug. | YKA2341A1
3%"x1"
3%"x34" | 1
6
2
1 | 1899 | Governor Case Dowel. " End Plate Gasket. (Continued) | #613
YKA1899A | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | #### List Division No. 17. Synchronizer or Speed Regulator | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | 7 | | | 14"> | 17" | | | |--|--|---|---|---
--------------------------------------|---|---|--|--|---|---| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Used | 5
Cyl.
Used | Cyl
Used | | 2340
2342
2343
2344 | " Hand Hole Cover Gasket. " End Plate. " Hand Hole Cover. " Timing Pointer " R. H. M. Screw. | YKA2340A
YKA2342A1
YKA2343A
YKA2344A
#10-24x 3/8" | 1
1
1
1
2 | 1898 | Governor Case Gasket | YKA1898A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 222 | Speed Regulator Slow Down Spring (360 R. P. M.) | YKA222F
YKA222A1 | 2 | 2 | 2 | 2 | 2 | 2 | ······································ | · · · · · · · · · · · · · · · · · · · | 2 | | 222A
504A
595
1593
1596
1599 | Synchronizer Spring Speed Regulator Spring Post Hand Wheel Stop Spring Speed Regulator Spring Plug " Rocker. " Indicator Rack | YKA222B1
YKA504A
YK595A1
YKA1593A
YKA1596A1
YKA1599A | 2
2
1
2
2
1 | 1602A | Hand Wheel | YKA1602M1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1767 | Governor Spider Hub, always with | YKA1767A
8/8"x1½" | 1 4 | 1 4 | 1 4 | 1 4 | 1 4 | 1 4 | 1 4 | - 1
4 | 1 4 | | 1769
1770
1771 A
1772
1773
1899 A
2340 A
2341 A
2343 A
2344 A | Speed Regulator Adjusting Screw " " " Nut Husing. Hand Wheel Retaining Ring. " " Stop Pin. Governor Case End Plate Gasket " " Hand Hole Cover Gasket. " " Case " " Hand Hole Cover. Injection Pointer. | YKA1769A
YKA1770A
YKA1771K2
YKA1772A1
YKA1773A
YKA1899B
YKA2340B
YKA2341B1
YKA2344B1
YKA2344B1 | 1 | 1
1
1
1
1
1
1
1
1 | 1
1
1
1
1
1
1 | 1
1
1
1
1
1
1
1 | 1
1
1
1
1
1
1
1
1 | 1
1
1
1
1
1
1
1
1
1 | 1
1
1
1
1
1
1
1
1
1 | 1
1
1
1
1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 2533
2534
2535
2536
2537
2538
2540
2541
2543
2544 | Governor Spider Hub Dowel Speed Regulator Rocker Pin Trunion Washer | YKA2533A
YKA2534A
YKA2535A
YKA2536A
YKA2537A
YKA2537A
YKA2540A
YKA2541A
YKA2541A
YKA2543A | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1 | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1
1
1 | 1
2
2
2
2
1
1
1
1 | 1
2
2
2
2
1
1
1
1 | | 2545
2546
2547
2548
2549
2551
2850
2976
5601
5602 | Adjusting Screw Housing Oil Plug. Speed Regulator Indicator Dial. " Hand " a Pointer Shaft. " Pinion. Hand Wheel Stop Pin Knob. " a Guide. Speed Regulator Rocker Pin Dowel. " Yoke Thrust Bearing. " Adj. Screw Collar Thrust Bearing. | YKA2545A
YKA2546A
YKA2547A
YKA2548A
YKA2549A
YKA2551A
YKA2850A
YKA2976A1
16FM34A18
16FM34A19 | 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
1
2
1 | 1
1
1
1
1
1
2
1 | | 1581G
1581H | Water Overflow Manifold " Manifold Man | YKA1581B
Y2KA1581H1
Y3KA1581G1 | | | | 1 | 1 | i | 2 | 2 | 2 | | 6528 | Water Overflow Manifold Spacer | Y4KA6528A | | | | | | | 1 | 1 | 1 | | Repair | Chart | No. | 18 | |--------|-------|-----|----| | | Before Ordering Repair Parts Read the Instructions | Symbol | 12": | 15" | 14"x17" | | | | | | | | |--|---|---|-----------------------|-------------------|----------------------------|---------------------------------------|-----------------------------|-----------------------------|----------------------------------|----------------------------------|--|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl. C | yl. Cyl. Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Use | | | | 1581P
2124
2115E | Water Overflow Manifold " Manifold horizontal exhaust manifolds " Manifold Horizontal exhaust manifolds " Gasket [Air Start Pipe Flange (Upper) " Flange (Upper) Air Start Pipe Flange Plug (Solid) | YJA1581M
Y2JA1581N
Y3JA1581J
Standard (4")
YKA2115G
YKA2115F
1 ½" | 1 | 1 | 1 | 1 2 1 | 1 3 1 | 3 4 2 | 3 5 2 | 3 6 3 | | | | 2323
1262
1262A
6660B | Air Start Pipe Flange Gasket. Air Start Pipe Flange Gland. " " " Gland. " " " Plug Gasket. " " " Candle Wicking. | YKA2323A1
YKA1262A
YKA1262B
YLA6660A
¼"x10"
Y2KA1585B | 1 2 | 2
4
2 | 1 | 2
2
2
2
2
2
1 | 3
2
4
2
4
1 | 4
4
4
4
1 | 5
4
6
4
6
1 | 6
4
8
4
8
1 | | | | 798A
1584B
277B
1586P
1586Q
1584A | Water Overflow Funnel | YKA798C
YKA1584E
16FM39J2
YKA1586R
YKA1586S
YKA1584D | 1 2 1 2 1 2 1 2 1 2 1 | 3 3 3 | 1
1
1
1
1
1 | 2
2
2
2
2
2
2 | 3 3 3 3 3 3 | 4
4
4
4
4 | 5
5
5
5
5
5 | 6
6
6
6
6 | | | | 6940 | {Upper Water Header Pipe | Y2JA6940A
Y2KA6940A | | | | | 1 | | 1 | 2 | | | | 6940A | {Upper Water Header Pipe Pipe Pipe | Y2JA6940B
Y2KA6940B | 2 | 2 | | 2 | 2 | 4 | 4 | 4 | | | | 1687E
1687B | Upper to Lower Water Manifold Pipe " " " Pipe " " Pipe Upper to Lower Water Manifold Pipe | YJA3816A
YKA3816B
Y2KA3816A
Y6KA3816A | 1 1 | | 1 | 1 | 1 | 2 | 2 | 1 1 | | | | 3149A
3149B | Lower Water Manifold (One Cyl. Opening) Lower Water Manifold (Two Cyl. Opening) " Manifold (Two Cyl. Opening) | YKA3149A1
Y2JA3149C1
Y2KA3149B2 | 1i | | 1 | 1 | | 2 | 1 | | | | | 3149D | {Lower Water Manifold (Three Cyl. Opening) | Y3JA3149C1
Y3KA3149B2 | | | | | 1 | | 1 | 2 | | | | 407B
407D
1582B | Water Manifold to Cylinder Gasket. " Gasket. " Flange. | YKA407B
YLA407B
YLA1582D | 1 1 | | | 2
1
1 | 3
1
1 | 4 | 5
1 | 6 | | | | 1617B | Regulating Valve Bonnet Gasket | CJA858A | 2 | 3 | | 2 | 3 | 4 | 5 | 6 | | | | 1618 B -C | Cooling Water Regulating Valve (Complete)
(Note:—Replaced on later models with plug (Y5LA4379A) and gaskets (CJA858A). | | 2 | 3 | •••• | 2 | 3 | 4 | 5 | 6 | | | | 1618B
1614A
1499
1615
1616A
669A | Water Regulating Valve (All in Bracket). " " Bonnet. " " Packing. " " " Gland. " " " Nut. " " Handle " Dowel. | YLA1618A
YLA1614A
CFA1499A2
CFA1615A1
YLA1616A
YKA669A
#205 | 2 12 2 2 2 2 2 | 3
18
3
3 | | 2
2
12
2
2
2
2
2 | 3
3
18
3
3
3 | 4
4
24
4
4
4 | 5
5
30
5
5
5
5 | 6
6
36
6
6
6
9 | | | #### List Division No. 19-Tools and Wrenches # List Division No. 20—Oil Filter Storage Tank | | Before Ordering Repair Parts Read the Instructions | Symbol | - | 12″x15 | | | 14"x17" | | | | | | | |------------------|---|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | | | 750B-C | Tools (Complete Set) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 189A | Fuel Reservoir Eye Bolt | 1/6" | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 189 | Piston Lifting Eye Bolt | YKA189A | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 419A | Flywheel Turning Bar | YK419A
YJA2600A | 1 2 | 1 2 | 1 2 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 2600 | Flywheel Turning Bar. (Piston Clamp, with (2) ½"x1" Cap Screws. " Clamp, with (2) ½"x1½" Cap Screws. | YKA2600A | | | | 2 | 2 | 2 | 2 | 2 | 2 | | | | 3693 | Piston Ring Guide | YJA3693A | 1 | 1 | 1 | | | | | | | | | | 66 | " " Guide
Air Start Cage Plug | YKA3693A
ND66 | 1 | 1 | i | 1 1 | 1 | 1 | 1 | 1 | 1 | | | | 00 | T1: C | 3/ 10-5 | 4 | 6 | 8 | 4 | 6 | 8 | 6 | 12, | 8 | | | | | Deer End Wrench 1 3/8" Nut. | #13 | 1 | 1 | 1 | | | | , | | | | | | | " Wrench 1½" Nut | #14
#16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " " Wrench 5/6"—3%" Nut | #27 | 1 | 1 | 1 | î | î | î | î | î | î | | | | | " "Wrench ½"—58" Nut | #34 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " Wrench 34 - 16" Nut | #39
#43 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " " Wrench 3%" Cap Screw | #702 | î | î | î | î | î | 1 | î | 1 | î | | | | | " Wrench 3g" Cap Screw. " Wrench ½" Cap Screw. | #704 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | Box Type Wrench 1¼" Nut. Box Wrench 1½" Nut. | #812
#814 | · · · · · | i | 1 | | | 0 | 1 | 1 | 1 | | | | | Box Wrench 1%" Nut. | #816 | | | | 1 | 1 | 1 | | | | | | | | Box Wrench 172 Nut Hollow Head Setscrew Wrench 184 " Wrench 184 Adapter Tube Packing Gland Wrench (Not Shown) | 16FM19AA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 1080 | Adenter Tube Pasking Cland Wroneh (Net Shown) | 16FM19AA
CHB1080A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 400 | Flywheel Hub Bolt Wrench. | YK400 | 1 | 1 | 1 | î | î | 1 | î | 1 | î | | | | 2384 |
Governor Socket Wrench | YK2384A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 2778 | Main Bearing Socket Wrench | YJA2778A
YKA2778A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 2694 | Upper Water Header Packing Gland Wrench (Not Shown) | TD2694A | 1 | 1 | 1 | î | 1 | 1 | 1 | 1 | 1 | | | | 2284 | Piston Pin Sleeve | YJA2284B | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | | | 1620 | Piston Pin Sleeve Screw. | YKA2284B
CFE1620A | 4 | 4 | 4 | 1 4 | 4 | 4 | 4 | 4 | 4 | | | | | Upper to Lower Base Capscrew Socket Wrench | 452D | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | Upper to Lower Base Dowel Removing Tool | TD2273A | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " Nut | TD2274A | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | 721 E -C | Oil Filter Storage Tank (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 721E | Oil Filter Storage Tank, always with | CFB721C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " " " Bottom | CFB721B
PBD555A | 3 | 3 | 3 | 3 | 1 3 | 1 3 | 1 3 | 3 | 3 | | | | | " " Elbow | YKA2794B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | " " " " Rivets | 3/8"x1/2" | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | | " " " Inlet Fitting | CFB4834A
YKA5305C | 1 | 1 | 1 | i | 1 | 1 | 1 | i | i | | | | | " " Coupling | YKA5305D | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2586B | Oil Storage Tank Base | YKA2586D | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | | | | 1096D | " " Cover | CFB1096A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 994B | Gauge Glass Arm | PBD994A | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 2 | 2 | | | | 995
996 | " " Gland Cap" " Washer | PBD995A
PBD996A | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 2 | | | | 2387B | " Glass | YKA2387B | 1 | 1 | 1 | ĩ | ī | 1 | 1 | 1 | 1 | | | | 997B | Gauge Glass Guard Rod (All in Bracket) | PBD997A | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 1 998A | " " " End | PBD998A | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | Oil Filter to Cover Flat Head Screw | 5/16"x3/4" | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | Drain Nipple | ½"x10" | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 5350B | Tee Handle Stop Cock. Oil Filter (Purolator) | G48WM34 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 1091E | Oil Filter Element (Purolator) | 0.40 11 10 1 | î | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | #### List Division No. 21. Dredge Parts | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | " | | | 14"x | 17" | | | |-------------------------------------|---|---|-----------------------|--------------------------------|-------------------|-----------------------|----------------------------|---------------------------|--|-----------------------|---------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Use | | 298E-C | Main Bearing Oil Gauge (Complete) | | 1 | 2 | 3 | 1 | 2 | 3 | 3 | 4 | 5 | | 298D
825
990
989A
2108D | Main Bearing Oil Gauge Body, Always with Glass a a Glass u a a Glass Gasket a a a Vent Plug a a a Body Gasket | YJA298A
YK825
YK990
YK989A
YKA2108A | 1
1
2
1
1 | 2
4
2
2
2 | 3
6
3
3 | 1
1
2
1
1 | 2
2
4
2
2 | 3
6
3
3 | 3
6
3
3 | 4
4
8
4
4 | 5
10
5
5 | | 2308 | Main Bearing Oil Gauge Body Fitting, Always with " " Fitting Pipe Plug | YJA2308A
1,8"
1" | 1 1 1 | 2
2
2 | 3 3 3 | 1
1
1 | 2
2
2 | 3 3 3 | 3 3 3 | 4 4 4 | 5
5
5 | | 2821 | Main Bearing Oil Baffle Plate | YKA2821A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 165J | Air Stop Ring (Bottom), always with | YJA165G
YKA165H
Y6KA165G
YJA165H
YKA165G
Y5KA165A
Y5KA165B
Y6KA165H
YK191A
YJA191A
YJA191A
YZ1192
YK333Z"
Y23192
YK392A
Y4KA394A
YK394
YX394 | 2 | 2

8
8
8
8
8 | 2
 | 24 4 4 4 4 | 2
8
8
8
8
8 | 2
12
12
12
12 | 6
2
16
16
16
16
8
8 | 8 2 20 20 20 10 10 | 2
24
24
24
24
24 | | | Capscrew | 516" x 2" 516" x 2" 516" 1/2" | | | | | | | 8 | 10
10
10 | | Repair Chart No. 21 # List Division No. 21. Dredge Parts (Continued) | D! | Before Ordering Repair Parts Read the Instructions | Symbol | - | 12″x15 | | 1 | 1 0 | 14"x | 1 | = | 1 0 | |-------------------------------|---|--|---|-------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|--|------------------|---------------------------------|---| | Repair
Number | on Page 33. NAME OF PART | Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cy
Use | | 511E-C | Pump Case Housing (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 511E
510B | Same as 511B-DC except use [Pump Case Housing. " Housing. " Housing. " Housing. " Housing. " " Overflow Pipe. | YKA511C3
Y3KA511C4
Y4KA511C3
Y5KA511B3
Y6KA511E4
YKA510B | .1
 | | 1
::::: | 1 | .1
 | 1
:::::
1 | 1 | 1 | 1 1 | | 985B-C | Fuel Reservoir (Complete) | | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | | | 985B
991B | Fuel Reservoir, always with. "Reservoir, always with. "Reservoir, always with. "Reservoir, always with. "Reservoir, always with. "Reservoir starting Valve Bushing. "Gauge Glass. "Plug. | YKA985B4
Y3KA985B4
Y4KA985B4
Y5KA985A4
Y6KA986D4
YKA1199A
YKA991B
YK989 | 1
1
1
1 | 1

1
1
1 | 1

2
1
1 | 1

1
1
1 | 1

1
1
1 | 1

2
1
1 | 1
2
1
1 | 12 1 1 | 1 | | 975-C | " " Gasket Air Shut-Off Valve Fuel Res. Stud Air Start Valve Plug Fuel Discharge Strainer (Complete) (See Reg. Eng. Rep. List) | YK990
5/8"x21/2"
Y5KA3141A | 2
 | 2 2 | 2
2
1 | 2
2
1 | 2
2
1 | $\begin{array}{c} 2 \\ 2 \\ \cdots \\ 1 \end{array}$ | 2
2
 | 2
2
1
1 | 1 | | 2321B | Pump Case Housing Fuel Res. Stud | YKA2321B | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | (| | 986 F -C | Fuel Reservoir Cover (Complete) | | 1 | 1. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 986F | Fuel Reservoir Cover. | Y2KA986C
Y3KA986C
Y4KA986E
Y5KA986B
Y6KA986D | 1 | 1 | `i | 1 | 1
::::: | | 1
::::: | 1 | 1 | | 2790A
2791 | " Blank Flange " Gasket | YKA2790B
YKA2791A | 1 | | | 1 | | | | | | | 1902D | Fuel Reservoir Cover Gasket. " Gasket. " " Gasket. " " Gasket. " " Gasket. | Y2KA1902A
Y4KA1902A
Y5KA1902A
Y6KA1902A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 6627 | Fuel Reservoir Cover Gasket Washer | YKA6627A | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | 5273B-C | Thrust Bearing (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 , | | | 1423B | Thrust Bearing Collar (Half). " Collar (Half). " Collar (Half). " Collar (Half). | YKA1423J1
YKA1423K1
YKA1423G1
YKA1423H1 | 1
1
 | 1
1 | 1
1
 | 1
1
 | 1
1
 | 1
1
 | 1 1 | 1 1 | | | 2749
2073
5273B
2258 | Thrust Bearing Collar Bolt. (Thrust Bearing Housing (Half) (YKA5273H is furn.) ("a" (Half) (YKA5273J is furn.) ("Thrust Bearing Housing Pipe Plug." """ """ """ """ """ """ """ | YKA2749B1
YKA2073A
YKA5273F1
YKA5273E1
14"
YKA2258A
12"
'Z" C. P. | 2
2
2
2
2
2
2
2 | 2
2
2

2
2
2
2 | 2
2
2
2
2
2
2 | 2
2
2
2
2
2
2
2 | 2
2
2

2
2
2
2 | 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 | 2
2
2
2
2
2
2 | | | 520B
1082E
2302 | Fuel Supply Pump Discharge Valve Cap. [Lub. Oil Sump. Cover " Cover Thrust Collar to Base Cap Screw. | YKA520B
YKA1082E
Y4KA1082E
YKA2302A | 1 | 1
1
10 | 1 1 1 10 | 1 1 10 | 1 1 1 10 | 1
1
10 | 1 1 10 | 1 1 10 | 1 | | 25 | Crankshaft Note:—When Crankshaft is ordered for Dredge Outfit engine number must be specified. The Standard Crankshaft is used on all outfits except 4 cylinder engine. The arrangement of Air Stop Rings differ and the 4 cyl. engine has special counterweights. | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Note:—When ordering injection tubes, specify AR1, AR2, AR3 or AR4 where found in list. See Fig. 37 on page 34 to determine engine rotation. | | | | | | | | | | | | 421H-A
421G-A | Injection Tube, Pump to Nozzle (96"), (Complete) | YJA421M
YKA421M | 1 | | | 1 | | | | | | | 422J-A | [Injection Tube, Pump to Union (108"), (Complete) AR2 and AR4 " Tube, " " (93"), (Complete) AR1 and AR3 | Y2JA422M
Y2JA422L | | 2 2 | | | | | | | | | 422H-A | [Injection Tube, Pump to Union (97"), (Complete) AR2 and AR4 "Tube, "" (99½"), (Complete) AR1 and AR3 | Y2KA422N
Y2KA422P | | | | | 2 2 | | | | | | 423J-A | Injection Tube, Pump to Union (*139), (Complete) AR2 and AR4 " Tube, " " (124"), (Complete) AR1 and AR3 | Y3JA423J
Y3JA423H | | | 3 3 | | | | | | | | 423H-A | [Injection Tube, Pump to Union (128"), (Complete)
AR2 and AR4 " Tube, " " (126"), (Complete) AR1 and AR3 | Y3KA423N
Y3KA423Q | | | | | | 3 | | | | | 424H-A | [Injection Tube, Pump to Union (174"), (Complete) AR2 and AR4 "Tube, " " (152"), (Complete) AR1 and AR3 | Y4KA424P
Y4KA424R | | | | | | | 4 4 | | | | 425G-A | [Injection Tube, Pump to Union (209"), (Complete) AR2 and AR4 " Tube, " " (184"), (Complete) AR1 and AR3 | Y5KA425N
Y5KA425Q | | | | | : ::: | | | 5
5 | | | 427G-A | Injection Tube, Pump to Union (238¼"), (Complete) AR2 and AR4.
Injection Tube—Pump to Union (Cyl. #6 Only) (AR2 & AR4) | Y6KA427N
Y6KA427Q
Y6KA427P | | | | | | ::::: | | | 1 | # List Division No. 22. Springs and Gaskets | Repair | Before Ordering Repair Parts Read the Instructions | Symbol | - | 12"x15 | | | | | x17" | 4 5 6
yl. Cyl. Cy | | | | | | | | |---|--|---|------------------------|------------------------|------------------------|---|----------------------------|-----------------------|----------------------------|-----------------------|--------|--|--|--|--|--|--| | Number | on Page 33. NAME OF PART | Size | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl. | Cyl.
Used | Cyl. | Cy | | | | | | | | 426G
426F | Injection Tube, Union to Nozzle (44¾4"), (Complete) | | | Coca | Osca | OBCU | Osed | Oseu | Oseu | Oseu | USE | | | | | | | | 2790
2791 | Note:—Injection tubes are furnished complete with fittings as shown in Repair Chart No. 21. All fittings may be ordered separately. Fittings, with the exception of 2790 and 2791 which are listed below, are found on page 36. [Fuel Reservoir Cover Flange " Flange Fuel Reservoir Cover Flange Gasket. | YJA2790A
YKA2790A
YKA2791A | 1 | 22 | 3 | 1 1 | 2 2 | 3 3 | 4 4 | 5
5 | 66 | | | | | | | | 748D-C | Springs (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | 178
193B | Piston Pin Dowel Spring (Air Stop Ring Spring (Lubricating Oil Sump Cover Pin Spring | YK178A1
YKA193A1
YKA193A1 | 1
8
1 | 2
16
1 | 3
24
1 | :
8
1 | 2
16
1 | 3
24
1 | 4
32
1 | 5
40
1 | 48 | | | | | | | | 256D | Governor Spring with Plug | YJA256E | 2 | 2 | 2 | | | | | | in the | | | | | | | | 259
260B
266
300A
392
537 | Injection Pump Suction Valve Spring. " Plug. Injection Pump Suction Valve Spring. " Plunger Spring. " Suction Valve Push Rod Spring. Aux. Fuel Pump Plunger Rod Spring. Air Stop Ring Backlash Spring. " " Driving Spring. Injection Pump Discharge Valve Spring. | YKA256J
YKA259A
CKB260A
YKA266B
YKA300B
YK392A
Y4KA392B | 1
1
1
1
2 | 2
2
2
1
4 | 3
3
3
1
6 | 2
1
1
1
1
2 | 2
2
2
2
1
4 | 2
3
3
1
6 | 2
4
4
4
1
8 | 2
5
5
5
1 | 15 | | | | | | | | 572
595A
837
837A
856A
405 | Air Starting Valve Spring. Air Valve Spring. Piston Pin Oil Scraper Spring. " " Spring. Air Start Check Valve Spring. Connecting Rod Box Cap Wick Support Spring. | YK537
YKA572A
YK595A1
YKA837A
YK837A
YKA856A | 1
1
20
2
1 | 2
1
40
4
1 | 3
2
60
6
2 | 1
1
20
2 | 2
1
40
4 | 3
2
60
6 | 4
2
80
8 | 5
2
100
10 | 120 | | | | | | | | 257
295A | Air Start Shut Off Valve Spring. | $ rac{YK1405A}{YKA2257A1} \ YKA2295B$ | 2
2
1 | 4
2
1 | 6 2 1 | 2
2
1 | 4
2
1 | 6
2
1 | 8
2
1 | 10
2
1 | 1 | | | | | | | | 326 | Air Start Rocker Aux. Spring
[Injection Pump Rocker Aux. Spring "Spring | YKA2326A4
YKA2326A4
Y5KA2326A | 1
1 | $\frac{1}{2}$ | $\frac{2}{2}$ | 1
1 | 1
2 | $\frac{2}{2}$ | 2
4 | 2 5 | | | | | | | | | 326A | Injection Pump Rocker Aux. Spring. | YKA2326C | | | 1 | | | 1 | | | | | | | | | | | 336 | Gov. Cam Rocker Aux. Spring. Spring. | $\begin{array}{c} YKA2336A2 \\ Y5KA2336A \end{array}$ | 1 | | 3 | | | 3 | | 5 | | | | | | | | | 336A
362
283
541 | Gov. Cam R cker Aux. Spring. Fuel Reservoir Cover Cap Spring. Injection Pump Relief Valve Spring. Governor Weight Drag Spring. | YKA2336B
YKA2362A
CKC6283A
YKA6541B | 1
1
2 | 1
2
2 |
1
3
2 | 1
1
2 |
1
2
2
2 |
1
3
2 |
1
4
2 |
1
5
2 | | | | | | | | | 749D-C | Gaskets and Packing (Complete) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | 33E
76 | Cylinder Head Gasket Exhaust Nozzle Hand Hole Cover Gasket. "Pot " " Gasket. | YKA33M
YF76
YF76 | 8
2
1 | 16
4
1 | 24
6
1 | $\begin{array}{c} 10 \\ 2 \\ 1 \end{array}$ | 20
4
1 | 30
6
1 | 40
8
2 | 50
10
3 | 6 | | | | | | | | 76A | Exhaust Pipe Hand Hole Cover Gasket. (Exhaust Nozzle to Cyl. Gasket. | YKA76B
YJA77A | 1 1 | 2 2 | 3 3 | ® 1 | 2 | 3 | 4 | 5 | | | | | | | | | 77A | " a " a " Gasket." " Pipe " " Gasket." " " Gasket." | YKA77A
YJA77A
YKA77A | i | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | | | | | | | 197B | $\left\{ \begin{array}{ll} \text{Upper-Lower Base Gasket.} & \\ {}^{\alpha} & {}^{\alpha} & \text{Gasket.} \end{array} \right.$ | $ \begin{array}{c} \text{YJA197B} \\ \text{YJA197C} \end{array} $ | 2 4 | 4
8 | 6
12 | | | | | | | | | | | | | | 197E
197D | (Upper-Lower Base Gasket | $ rac{ m YKA197E}{ m YKA197D}$ | | | ::::: | 2 4 | 4 8 | 6
12 | 8
16 | 10
20 | 1 2 | | | | | | | | 198B | Cylinder-Upper Base Gasket. Gasket. | YJA198B
YKA198B | 1 | | 3 | 1 | 2 | 3 | 4 | 5 | | | | | | | | | 199 | Upper Base Hand Hole Cover Gasket. Air Valve Seat Gasket. " " Gasket. | YJ199
YK199
YJ199
YK199 | . 1
 | 2
2 | 3 | 1 | 2 2 | 3 | 4 | 5 | | | | | | | | | 214
405
407B | Injection Tube Union Gasket. Crank Pin Oil Ring Gasket. /Lower Water Manifold to Cyl. Gasket. "Section Gasket." | YKA214A
YK405
YKA407B
YLA407B | 1
1 | 2
2
1 | 3 1 | 1
1 | 2
2
2
1 | 3
3
3 | 4
4
4
1 | 5
5
5 | | | | | | | | | 116
169A
170
172A | Exhaust Pot Flange Gasket Pump Housing Side Cover Gasket. Aux. Fuel Pump Discharge Cap Gasket. Pump Housing Gasket. " Gasket." " Gasket. | YG416
YKA469A
YKA470A
YKA472A
Y4KA472A | 2
2
1
2 | 2
2
1
2 | 5
2
1
2 | 2
1
2 | 2
1
2 | 2
1
2 | 2
1
2 | 2
1
2 | | | | | | | | | 473A | Injection Pump Body Gasket(Air Start Distributor Body Gasket | YKA473A | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | | | | | | | | | 573B | a " Gasket." " " Gasket." | YKA573A
Y3KA573A1
Y6KA573A1 | 1 | | i | 1 | | 1 | | 1 | | | | | | | | | 573D
617
618
632A | Air Start Shut Off Valve Cage Gasket. Exhaust Pot Cover to Body Gasket. "Flange Gasket. (Cylinder Head Counterbore Gasket. "Gasket. "Gasket. | YKA573B
YK617
YK618
YJA632F
YKA632F | 1
1
1 | 1 1 2 | 1 1 3 | 1
1
2 | 1
1
2 | 1
1
5 | 1
2
4 | 1
3
4
5 | | | | | | | | | 858D | Air Start Valve Cage Gasket | CFE5877A | 1 | 2 2 | 3 2 | 1 2 | 2 2 | 3 2 | 4 | 5 | | | | | | | | # List Division No. 22. Springs and Gaskets (Continued) | | Before Ordering Repair Parts Read the Instructions | Symbol | | 12"x15 | " | | | | x17" | | | |---|--|---|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------| | Repair
Number | on Page 33. NAME OF PART | or
Size | Cyl.
Used | Cyl.
Used | 3
Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl.
Used | Cyl
Used | | 039
097
549
584 A
548B
617 | Aux. Fuel Pump Suction Valve Gasket. Lubricating Oil Pump Body Gasket. Air Start Valve Cage Gasket. Water Overflow Pipe Gasket. "Funnel Gasket. (Regulating Valve Bonnet Gasket. Lubricator Overflow Pipe Bracket Gasket. | YK1039
YKA1097 A
YKA1549 A
YKA1584D
YKA1584E
CJA858 A
YKA1617 A | 1
1
1
1
1
 | 1
1
2
2
2
2
2
1 | 1
1
3
3
3
3
1 | 1
1
1
1
1
 | 1
1
2
2
2
2
2
2 | 1
3
3
3
3
1 | 1
1
4
4
4
4
1 | 1
1
5
5
5
5
5 | 1
1
6
6
6
6
6 | | 898
899
902
902B | Governor Case Gasket. " End Plate Gasket Fuel Reservoir Cover Gasket Aux. Fuel Suction Cover Gasket [Injection Pump Discharge Valve Cage Gasket " Relief Valve Cage Gasket Main Bearing Oil Gauge Body Gasket | YKA1898A
YKA1899A
YKA1902A
YKA1902C
YKA2108A
YKA2108A
YKA2108A | 1
1
1
1
1
1
2 | 1
1
1
1
2
2
2 | 1
1
1
3
3
2 | 1
1
1
1
1
1
2 | 1
1
1
1
2
2
2 | 1
1
1
1
3
3
2 | 1
1
1
1
4
4
4 | 1
1
1
5
5
4 | 1
1
1
1
6
6
4 | | 2108A
2108B | Aux. Fuel Suction Cover Plug Gasket. [Injection Pump Relief Valve Cage Plug Gasket | YLA2108A
CJA2108A
CJA2108A | 1
1
1 | 1
2
2 | 1
3
3 |
1
1
1 | 1
2
2 | 1
3
3 | 1
4
4 | 1
5
5 | 1
6
6 | | 2323
2334
2335
2335A
2340
2364
2369 | Air Start Pipe Flange Gasket. Aux. Fuel Suction Overflow Casing Gasket. Air Starting Valve Spring Plug Gasket. Air Start Inlet Elbow Gasket. Governor Case Hand Hole Cover Gasket. Upper Base Oil Ring Cover Gasket. Lub. Oil Pump Discharge Conn. Gasket. | YKA2323A1
YKA2334A
YKA2335A
YKA2335B
YKA2340A
YKA2364A
YKA2369A | 1
1
1
1
1
2
2 | 2
1
1
1
1
4
2 | 3
1
2
1
1
6
2 | 1
1
1
1
1
2
2 | 2
1
1
1
1
4
2 | 3
1
2
1
1
6
2 | 4
1
2
1
1
8
2 | 5
1
2
1
1
10
2 | 6
1
3
1
1
12
2 | | 2401 | Fuel Reservoir Housing Gasket. | YKA2401A
Y3KA2401A
Y4KA2401A
Y5KA2401A
Y6KA2401A | 1 | 1 | `i | 1
 | 1 | 1 | 1 | 1 | 1 | | 2792
2792A
1645A
5877
5660 | Lub. Oil Pump Body Cover Gasket. " " Gasket. Base Sump Pipe Gasket. Cylinder Head Air Check Valve Gasket. Injection Pump Plunger Cylinder Gasket. | YKA2792A
YJA2792A
YKA4645B
YKA5877A
YKA6660A | 2
1
1
1 | 2
2
2
2
2 | 2
3
3
3 | 2
1
1
1 | 2
2
2
2
2 | 2
3
3
3 | 2
4
4
4 | 2
5
5
5 | 6
6
6 | | 660B | Air Start Pipe Flange Plug Gasket Water Overflow Manifold Blind Flange Gasket "to Spacer Gasket | YLA6660A
4″ 15FM34F
4″ 15FM34F | | 2 | 2 | | 2
1 | 2
1 | 4
1
2 | 4
1
2 | 4
1
2 | | | Specify one of the following gaskets for use on engine with cast iron water cooled horizontal exhaust manifolds. | | | | | | | | | | , | | | Manifold Outlet Reducing Flange Gasket—10" | 15FM34A
15FM34A
15FM34A
15FM34A | | 1
1
1
1 | 1
1
1
1 | | 1
1
1 | 1
1
1 | 1
1
1 | 1
1
1 | 1
1
1 | | | Packings | | | | | | | | | | | | 1089
1499 | Governor Case Overflow Packing Ring Regulating Valve Packing. Air Start Pipe Flange Candle Wicking. Cylinder Lub. Oil Pipe Packing. Exhaust Pot Wicking. Indicator Cock Adapter Tube Packing. | YKA1089A
CFA1499A2
¼"x10"
½"x½"x4"
½ lb. Ball
ND1772B | 12 | 1
12
2
4
3 | 1
18
4
6
5
3 | 12 | 1
12
2
4
3
2
2 | 1
18
4
6
5 | 1
24
4
8
6
4 | 1
30
6
10
6
5 | 1
36
8
12
9
6 | | 5567A
5567A | Indicator Cock Adapter Tube Packing. Relief Valve Body Adapter Tube Packing. | ND1772B
ND1772B | 1 | 2 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 |